On simultaneous integrability of two commuting almost tangent structures
We give a brief presentation of gwistor spaces, which is a new concept from G 2 geometry. Then we compute the characteristic torsion T c of the gwistor space of an oriented Riemannian 4-manifold with constant sectional curvature k and deduce the condition under which T c is ∇c-parallel; this allows for the classification of the G 2 structure with torsion and the characteristic holonomy according to known references. The case of an Einstein base manifold is envisaged.
Let be a Riemannian manifold, its frame bundle. We construct new examples of Riemannian metrics, which are obtained from Riemannian metrics on the tangent bundle . We compute the Levi–Civita connection and curvatures of these metrics.
Let be a principal bundle of frames with the structure group . It is shown that the variational problem, defined by -invariant Lagrangian on , can be equivalently studied on the associated space of connections with some compatibility condition, which gives us order reduction of the corresponding Euler-Lagrange equations.
We consider projectively Anosov flows with differentiable stable and unstable foliations. We characterize the flows on which can be extended on a neighbourhood of into a projectively Anosov flow so that is a compact leaf of the stable foliation. Furthermore, to realize this extension on an arbitrary closed 3-manifold, the topology of this manifold plays an essential role. Thus, we give the classification of projectively Anosov flows on . In this case, the only flows on which extend to ...
This Note will be followed by a Note II in these Rendiconti and successively by a wider and more detailed memoir to appear next. Here six quaternionic-like structures on a manifold (almost quaternionic, hypercomplex, unimodular quaternionic, unimodular hypercomplex, Hermitian quaternionic, Hermitian hypercomplex) are defined and interrelations between them are studied in the framework of general theory of G-structures. Special connections are associated to these structures. 1-integrability and...
We consider different types of quaternionic-like structures. The interrelations between automorphism groups of the subordinated structures and of some admissible connections are studied. A characterization of automorphisms of a quaternionic structure as some kind of projective transformations is given. General results on harmonicity of an automorphism of some -structure are obtained and applied to the case of an almost Hermitian quaternionic structure. Different noteworthy transformations groups...