A note on the volume of balls on Riemannian manifolds of non-negative curvature
Let M be an n-dimensional complete immersed submanifold with parallel mean curvature vectors in an (n+p)-dimensional Riemannian manifold N of constant curvature c > 0. Denote the square of length and the length of the trace of the second fundamental tensor of M by S and H, respectively. We prove that if S ≤ 1/(n-1) H² + 2c, n ≥ 4, or S ≤ 1/2 H² + min(2,(3p-3)/(2p-3))c, n = 3, then M is umbilical. This result generalizes the Okumura-Hasanis...
In this article, we prove new stability results for almost-Einstein hypersurfaces of the Euclidean space, based on previous eigenvalue pinching results. Then, we deduce some comparable results for almost umbilical hypersurfaces.
Let be an -dimensional () simply connected Hadamard manifold. If the radial Ricci curvature of is bounded from below by with respect to some point , where is the Riemannian distance on to , is a nonpositive continuous function on , then the first nonzero Neumann eigenvalues of the Laplacian on the geodesic ball , with center and radius , satisfy where is the solution to