Geodesics on product lorentzian manifolds
Using Baire categories uniqueness of geodesic segments and existence of closed geodesics on typical convex surfaces are investigated.
La systole d’une variété riemannienne compacte non simplement connexe est la plus petite longueur d’une courbe fermée non contractile ; le rapport systolique est le quotient . Sa borne supérieure, sur l’ensemble des métriques riemanniennes, est fini pour une large classe de variétés, dont les .On étudie le rapport systolique optimal des variétés de Bieberbach compactes, orientables de dimension qui ne sont pas des tores, et on démontre en utilisant des constructions de métriques polyèdrales...
For a locally symmetric space , we define a compactification which we call the “geodesic compactification”. It is constructed by adding limit points in to certain geodesics in . The geodesic compactification arises in other contexts. Two general constructions of Gromov for an ideal boundary of a Riemannian manifold give for locally symmetric spaces. Moreover, has a natural group theoretic construction using the Tits building. The geodesic compactification plays two fundamental roles in...
Let A be a unital C*-algebra. Denote by P the space of selfadjoint projections of A. We study the relationship between P and the spaces of projections determined by the different involutions induced by positive invertible elements a ∈ A. The maps sending p to the unique with the same range as p and sending q to the unitary part of the polar decomposition of the symmetry 2q-1 are shown to be diffeomorphisms. We characterize the pairs of idempotents q,r ∈ A with ||q-r|| < 1 such that...
We prove Gronwall-type estimates for the distance of integral curves of smooth vector fields on a Riemannian manifold. Such estimates are of central importance for all methods of solving ODEs in a verified way, i.e., with full control of roundoff errors. Our results may therefore be seen as a prerequisite for the generalization of such methods to the setting of Riemannian manifolds.
Nous considérons une famille de groupes libres et discrets d’isométries orientées agissant sur la boule hyperbolique et contenant des transformations paraboliques; nous démontrons que le nombre de géodésiques fermées de de longueur au plus est équivalent à , où désigne l’exposant critique de la série de Poincaré.