Rigidity in non-negative curvature
P. Bérard et D. Meyer ont démontré une inégalité du type Faber-Krahn pour les domaines d'une variété compacte à courbure de Ricci positive. Nous démontrons des résultats de stabilité associés à cette inégalité.
L’objet de cet article est l’étude de quelques propriétés du volume minimal des variétés ouvertes. Nous obtenons un contre-exemple au théorème de rigidité précédemment établi dans le cadre des variétés fermées. Par ailleurs, les méthodes utilisées permettent de généraliser en toute dimension un résultat de Thurston sur le volume des sous-variétés hyperboliques en dimension 3.
Soit une surface complexe réglée. Nous introduisons des métriques de volume fini sur dons les singularités sont paramétrisées par une structure parabolique sur le fibré . Nous généralisons alors un résultat de Burns-deBartolomeis et Le Brun, en montrant que l’existence de métriques kählériennes singulières, de volume fini, à courbure scalaire constante négative ou nulle sur est équivalente à une condition de polystabilité parabolique sur ; de plus ces métriques proviennent toutes de quotients...
We investigate pairs of surfaces in Euclidean 3-space with the same Weingarten operator in case that one surface is given as surface of revolution. Our local and global results complement global results on ovaloids of revolution from S-V-W-W.
For at least 3, the Dehn functions of and are exponential. Hatcher and Vogtmann proved that they are at most exponential, and the complementary lower bound in the case was established by Bridson and Vogtmann. Handel and Mosher completed the proof by reducing the lower bound for bigger than 3 to the case . In this note we give a shorter, more direct proof of this last reduction.
Let be an -dimensional submanifold in the unit sphere , we call a -extremal submanifold if it is a critical point of the functional . In this paper, we can study gap phenomenon for these submanifolds.
Let be an -dimensional manifold and a Weil algebra of height . We prove that any -covelocity , is determined by its values over arbitrary regular and under the first jet projection linearly independent elements of . Further, we prove the rigidity of the so-called universally reparametrizable Weil algebras. Applying essentially those partial results we give the proof of the general rigidity result without coordinate computations, which improves and generalizes the partial result obtained...
In this paper we study the topological and metric rigidity of hypersurfaces in , the -dimensional hyperbolic space of sectional curvature . We find conditions to ensure a complete connected oriented hypersurface in to be diffeomorphic to a Euclidean sphere. We also give sufficient conditions for a complete connected oriented closed hypersurface with constant norm of the second fundamental form to be totally umbilic.