Previous Page 3

Displaying 41 – 58 of 58

Showing per page

Sur le volume minimal des variétés ouvertes

Laurent Bessières (2000)

Annales de l'institut Fourier

L’objet de cet article est l’étude de quelques propriétés du volume minimal des variétés ouvertes. Nous obtenons un contre-exemple au théorème de rigidité précédemment établi dans le cadre des variétés fermées. Par ailleurs, les méthodes utilisées permettent de généraliser en toute dimension un résultat de Thurston sur le volume des sous-variétés hyperboliques en dimension 3.

Surfaces kählériennes de volume fini et équations de Seiberg-Witten

Yann Rollin (2002)

Bulletin de la Société Mathématique de France

Soit M = ( ) une surface complexe réglée. Nous introduisons des métriques de volume fini sur M dons les singularités sont paramétrisées par une structure parabolique sur le fibré . Nous généralisons alors un résultat de Burns-deBartolomeis et Le Brun, en montrant que l’existence de métriques kählériennes singulières, de volume fini, à courbure scalaire constante négative ou nulle sur M est équivalente à une condition de polystabilité parabolique sur  ; de plus ces métriques proviennent toutes de quotients...

Surfaces with prescribed Weingarten operator

Udo Simon, Konrad Voss, Luc Vrancken, Martin Wiehe (2002)

Banach Center Publications

We investigate pairs of surfaces in Euclidean 3-space with the same Weingarten operator in case that one surface is given as surface of revolution. Our local and global results complement global results on ovaloids of revolution from S-V-W-W.

The Dehn functions of O u t ( F n ) and A u t ( F n )

Martin R. Bridson, Karen Vogtmann (2012)

Annales de l’institut Fourier

For n at least 3, the Dehn functions of O u t ( F n ) and A u t ( F n ) are exponential. Hatcher and Vogtmann proved that they are at most exponential, and the complementary lower bound in the case n = 3 was established by Bridson and Vogtmann. Handel and Mosher completed the proof by reducing the lower bound for n bigger than 3 to the case n = 3 . In this note we give a shorter, more direct proof of this last reduction.

The gap theorems for some extremal submanifolds in a unit sphere

Xi Guo and Lan Wu (2015)

Communications in Mathematics

Let M be an n -dimensional submanifold in the unit sphere S n + p , we call M a k -extremal submanifold if it is a critical point of the functional M ρ 2 k d v . In this paper, we can study gap phenomenon for these submanifolds.

The general rigidity result for bundles of A -covelocities and A -jets

Jiří M. Tomáš (2017)

Czechoslovak Mathematical Journal

Let M be an m -dimensional manifold and A = 𝔻 k r / I = N A a Weil algebra of height r . We prove that any A -covelocity T x A f T x A * M , x M is determined by its values over arbitrary max { width A , m } regular and under the first jet projection linearly independent elements of T x A M . Further, we prove the rigidity of the so-called universally reparametrizable Weil algebras. Applying essentially those partial results we give the proof of the general rigidity result T A * M T r * M without coordinate computations, which improves and generalizes the partial result obtained...

Topological and metric rigidity teorems for hypersurfaces in a hyperbolic space

Qiaoling Wang, Chang Yu Xia (2007)

Czechoslovak Mathematical Journal

In this paper we study the topological and metric rigidity of hypersurfaces in n + 1 , the ( n + 1 ) -dimensional hyperbolic space of sectional curvature - 1 . We find conditions to ensure a complete connected oriented hypersurface in n + 1 to be diffeomorphic to a Euclidean sphere. We also give sufficient conditions for a complete connected oriented closed hypersurface with constant norm of the second fundamental form to be totally umbilic.

[unknown]

Vincent Pecastaing (0)

Annales de l’institut Fourier

Currently displaying 41 – 58 of 58

Previous Page 3