Quaternionic analogue of CR geometry
The conformal infinity of a quaternionic-Kähler metric on a -manifold with boundary is a codimension distribution on the boundary called quaternionic contact. In dimensions greater than , a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension , we prove a criterion for quaternionic contact structures to be the conformal infinity of a quaternionic-Kähler metric. This allows us to find the quaternionic-contact structures...
Building on a recent paper [8], here we argue that the combinatorics of matroids are intimately related to the geometry and topology of toric hyperkähler varieties. We show that just like toric varieties occupy a central role in Stanley’s proof for the necessity of McMullen’s conjecture (or g-inequalities) about the classification of face vectors of simplicial polytopes, the topology of toric hyperkähler varieties leads to new restrictions on face vectors of matroid complexes. Namely in this paper...
Let and be hyperkähler manifolds. We study stationary quaternionic maps between and . We first show that if there are no holomorphic 2-spheres in the target then any sequence of stationary quaternionic maps with bounded energy subconverges to a stationary quaternionic map strongly in . We then find that certain tangent maps of quaternionic maps give rise to an interesting minimal 2-sphere. At last we construct a stationary quaternionic map with a codimension-3 singular set by using the embedded...
The aim of this paper is to give an easy explicit description of 3-K-contact structures on certain SO(3)-principal fibre bundles over quaternionic-Kähler manifolds.
Lee, Kim and Suh (2012) gave a characterization for real hypersurfaces of Type in complex two plane Grassmannians with a commuting condition between the shape operator and the structure tensors and for in . Motivated by this geometrical notion, in this paper we consider a new commuting condition in relation to the shape operator and a new operator induced by two structure tensors and . That is, this commuting shape operator is given by . Using this condition, we prove that...
A hypercomplex manifold is a manifold equipped with three complex structures I, J, K satisfying the quaternionic relations. Let M be a 4-dimensional compact smooth manifold equipped with a hypercomplex structure, and E be a vector bundle on M. We show that the moduli space of anti-self-dual connections on E is also hypercomplex, and admits a strong HKT metric. We also study manifolds with (4,4)-supersymmetry, that is, Riemannian manifolds equipped with a pair of strong HKT-structures that have opposite...
Nous montrons qu’une variété CR strictement pseudoconvexe, de dimension 3, analytique réelle, est le bord à l’infini d’une unique métrique d’Einstein autoduale, définie dans un petit voisinage. La preuve s’appuie sur une construction nouvelle d’espaces de twisteurs à l’aide de courbes rationnelles singulières.
TheHermitian symmetric spaceM = EIII appears in the classification of complete simply connected Riemannian manifolds carrying a parallel even Clifford structure [19]. This means the existence of a real oriented Euclidean vector bundle E over it together with an algebra bundle morphism φ : Cl0(E) → End(TM) mapping Ʌ2E into skew-symmetric endomorphisms, and the existence of a metric connection on E compatible with φ. We give an explicit description of such a vector bundle E as a sub-bundle of End(TM)....
Sia un grupo di Lie compatto e semplice. Sia la più piccola orbita nilpotente non-banale nell'algebra di Lie complessa . Si presenta una costruzione diretta di teoria di Lie delle metriche iperKahler su con potenziale Kahleriano -invariante e compatibili con la forma simplettica complessa di Kostant-Kirillov-Souriau. In particolare si ottengono le metriche iperKahler dei fibrati associati sugli spazi di Wolf (spazi simmetrici quaternionali a curvatura scalare positiva).
We study the intrinsic torsion of almost quaternion-Hermitian manifolds via the exterior algebra. In particular, we show how it is determined by particular three-forms formed from simple combinations of the exterior derivatives of the local Kähler forms. This gives a practical method to compute the intrinsic torsion and is applied in a number of examples. In addition we find simple characterisations of HKT and QKT geometries entirely in the exterior algebra and compute how the intrinsic torsion...