The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 501 – 520 of 791

Showing per page

On the existence of generalized quasi-Einstein manifolds

Uday Chand De, Sahanous Mallick (2011)

Archivum Mathematicum

The object of the present paper is to study a type of Riemannian manifold called generalized quasi-Einstein manifold. The existence of a generalized quasi-Einstein manifold have been proved by non-trivial examples.

On the finiteness of the fundamental group of a compact shrinking Ricci soliton

Zhenlei Zhang (2007)

Colloquium Mathematicae

Myers's classical theorem says that a compact Riemannian manifold with positive Ricci curvature has finite fundamental group. Using Ambrose's compactness criterion or J. Lott's results, M. Fernández-López and E. García-Río showed that the finiteness of the fundamental group remains valid for a compact shrinking Ricci soliton. We give a self-contained proof of this fact by estimating the lengths of shortest geodesic loops in each homotopy class.

Currently displaying 501 – 520 of 791