Displaying 501 – 520 of 791

Showing per page

On the existence of generalized quasi-Einstein manifolds

Uday Chand De, Sahanous Mallick (2011)

Archivum Mathematicum

The object of the present paper is to study a type of Riemannian manifold called generalized quasi-Einstein manifold. The existence of a generalized quasi-Einstein manifold have been proved by non-trivial examples.

On the finiteness of the fundamental group of a compact shrinking Ricci soliton

Zhenlei Zhang (2007)

Colloquium Mathematicae

Myers's classical theorem says that a compact Riemannian manifold with positive Ricci curvature has finite fundamental group. Using Ambrose's compactness criterion or J. Lott's results, M. Fernández-López and E. García-Río showed that the finiteness of the fundamental group remains valid for a compact shrinking Ricci soliton. We give a self-contained proof of this fact by estimating the lengths of shortest geodesic loops in each homotopy class.

Currently displaying 501 – 520 of 791