Proper action on a homogeneous space of reductive type.
We consider almost-complex structures on whose total Chern classes differ from that of the standard (integrable) almost-complex structure. E. Thomas established the existence of many such structures. We show that if there exists an “exotic” integrable almost-complex structures, then the resulting complex manifold would have specific Hodge numbers which do not vanish. We also give a necessary condition for the nondegeneration of the Frölicher spectral sequence at the second level.
If is a convex surface in a Euclidean space, then the squared intrinsic distance function is DC (d.c., delta-convex) on in the only natural extrinsic sense. An analogous result holds for the squared distance function from a closed set . Applications concerning -boundaries (distance spheres) and ambiguous loci (exoskeletons) of closed subsets of a convex surface are given.
It is shown that operators occurring in the classical Penrose transform are differential. These operators are identified depending on line bundles over the twistor space.
Dans cet article, nous étudions le flot des chambres de Weyl d’une large classe de sous-groupe discrets d’un groupe de Lie semi-simple réel : les groupes de Ping-Pong. Nous montrons que ce flot est mélangeant relativement à la mesure de Patterson-Sullivan ; celle-ci étant infinie en rang , nous précisons cette propriété de mélange en explicitant sa vitesse dans le direction du vecteur de croissance du groupe.
We study global properties of the twistor space over an even dimensional conformally flat manifold, proving that the twistor space is Kähler if and only if the manifold is conformally equivalent to the standard -dimensional sphere ().
Our main purpose of this paper is to introduce a natural generalization of the Bochner curvature tensor on a Hermitian manifold provided with the Hermitian connection. We will call the pseudo-Bochner curvature tensor. Firstly, we introduce a unique tensor P, called the (Hermitian) pseudo-curvature tensor, which has the same symmetries as the Riemannian curvature tensor on a Kähler manifold. By using P, we derive a necessary and sufficient condition for a Hermitian manifold to be of pointwise...
Let M̃ be an (m+r)-dimensional locally conformal Kähler (l.c.K.) manifold and let M be an m-dimensional l.c.K. submanifold of M̃ (i.e., a complex submanifold with the induced l.c.K. structure). Assume that both M̃ and M are pseudo-Bochner-flat. We prove that if r < m, then M is totally geodesic (in the Hermitian sense) in M̃. This is the l.c.K. version of Iwatani's result for Bochner-flat Kähler submanifolds.
Soit un ouvert relativement compact et localement pseudo-convexe de la variété analytique .Alors,1) Si le fibré tangent est positif, est -convexe.2) Si admet une fonction strictement plurisousharmonique, est de Stein.3) Si est l’espace total d’un morphisme de Stein à base de Stein, est de Stein.