Previous Page 9

Displaying 161 – 177 of 177

Showing per page

Pseudo-laplaciens. I

Yves Colin de Verdière (1982)

Annales de l'institut Fourier

On construit, sur une variété riemannienne X de dimension 2 ou 3 , les extensions autoadjointes Δ α , x 0 ( α R / π Z ) de la restriction du laplacien aux fonctions nulles au voisinage d’un point x 0 de X . On calcule explicitement les valeurs propres de Δ α , x 0 .

Pseudo-laplaciens II

Yves Colin de Verdière (1983)

Annales de l'institut Fourier

Dans cet article, nous étudions une famille d’opérateurs auto-adjoints Δ a dérivés du laplacien sur une surface de Riemann d’aire finie et ayant au voisinage de l’infini la structure d’un cylindre [ b , + [ × R / Z muni d’une métrique à courbure constante - 1 . Après avoir étudié la théorie spectrale de tels opérateurs, nous donnons, comme application, un théorème prévoyant l’absence générique de valeurs propres immergées dans le spectre continu du laplacien de ces surfaces. Nous montrons enfin comment ceci permet de...

Pseudo-real principal Higgs bundles on compact Kähler manifolds

Indranil Biswas, Oscar García-Prada, Jacques Hurtubise (2014)

Annales de l’institut Fourier

Let X be a compact connected Kähler manifold equipped with an anti-holomorphic involution which is compatible with the Kähler structure. Let G be a connected complex reductive affine algebraic group equipped with a real form σ G . We define pseudo-real principal G -bundles on X . These are generalizations of real algebraic principal G -bundles over a real algebraic variety. Next we define stable, semistable and polystable pseudo-real principal G -bundles. Their relationships with the usual stable, semistable...

Pseudo-Riemannian weakly symmetric manifolds of low dimension

Bo Zhang, Zhiqi Chen, Shaoqiang Deng (2019)

Czechoslovak Mathematical Journal

We give a classification of pseudo-Riemannian weakly symmetric manifolds in dimensions 2 and 3 , based on the algebraic approach of such spaces through the notion of a pseudo-Riemannian weakly symmetric Lie algebra. We also study the general symmetry of reductive 3 -dimensional pseudo-Riemannian weakly symmetric spaces and particularly prove that a 3 -dimensional reductive 2 -fold symmetric pseudo-Riemannian manifold must be globally symmetric.

Pseudo-symmetric contact 3-manifolds III

Jong Taek Cho, Jun-ichi Inoguchi, Ji-Eun Lee (2009)

Colloquium Mathematicae

A trans-Sasakian 3-manifold is pseudo-symmetric if and only if it is η-Einstein. In particular, a quasi-Sasakian 3-manifold is pseudo-symmetric if and only if it is a coKähler manifold or a homothetic Sasakian manifold. Some examples of non-Sasakian pseudo-symmetric contact 3-manifolds are exhibited.

Currently displaying 161 – 177 of 177

Previous Page 9