Morse indices of Yang-Mills connections over the unit sphere
We consider the motion by curvature of a network of smooth curves with multiple junctions in the plane, that is, the geometric gradient flow associated to the length functional. Such a flow represents the evolution of a two–dimensional multiphase system where the energy is simply the sum of the lengths of the interfaces, in particular it is a possible model for the growth of grain boundaries. Moreover, the motion of these networks of curves is the simplest example of curvature flow for sets which...
A survey of recent progress on the multiplicity and stability problems for closed geodesics on Finsler 2-spheres is given.
In this paper, we consider the problem of multiplicity of conformal metrics of prescribed scalar curvature on standard spheres . Under generic conditions we establish someMorse Inequalities at Infinity, which give a lower bound on the number of solutions to the above problem in terms of the total contribution of its critical points at Infinityto the difference of topology between the level sets of the associated Euler-Lagrange functional. As a by-product of our arguments we derive a new existence...
Se estudia la integrabilidad de campos multivectoriales en variedades diferenciables y la relación entre algunos tipos de campos multivectoriales en un fibrado de jets y conexiones en dicho fibrado. Como caso particular se relacionan los campos multivectoriales integrables y las conexiones cuyas secciones integrales son holonómicas. Como aplicación de todo ello, estos resultados permiten escribir las ecuaciones de campo de las teorías clásicas de campos de primer orden en varias formas equivalentes....