Displaying 361 – 380 of 790

Showing per page

Levi-flat filling of real two-spheres in symplectic manifolds (II)

Hervé Gaussier, Alexandre Sukhov (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

We consider a compact almost complex manifold ( M , J , ω ) with smooth Levi convex boundary M and a symplectic tame form ω . Suppose that S 2 is a real two-sphere, containing complex elliptic and hyperbolic points and generically embedded into M . We prove a result on filling S 2 by holomorphic discs.

Lie algebraic characterization of manifolds

Janusz Grabowski, Norbert Poncin (2004)

Open Mathematics

Results on characterization of manifolds in terms of certain Lie algebras growing on them, especially Lie algebras of differential operators, are reviewed and extended. In particular, we prove that a smooth (real-analytic, Stein) manifold is characterized by the corresponding Lie algebra of linear differential operators, i.e. isomorphisms of such Lie algebras are induced by the appropriate class of diffeomorphisms of the underlying manifolds.

Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras

Johannes Huebschmann (1998)

Annales de l'institut Fourier

For any Lie-Rinehart algebra ( A , L ) , B(atalin)-V(ilkovisky) algebra structures on the exterior A -algebra Λ A L correspond bijectively to right ( A , L ) -module structures on A ; likewise, generators for the Gerstenhaber algebra Λ A L correspond bijectively to right ( A , L ) -connections on A . When L is projective as an A -module, given a B-V algebra structure on Λ A L , the homology of the B-V algebra ( Λ A L , ) coincides with the homology of L with coefficients in A with reference to the right ( A , L ) -module structure determined by . When...

Linear hamiltonian circle actions that generate minimal Hilbert bases

Ágúst Sverrir Egilsson (2000)

Annales de l'institut Fourier

The orbit space of a linear Hamiltonian circle action and the reduced orbit space, at zero, are examples of singular Poisson spaces. The orbit space inherits the Poisson algebra of functions invariant under the linear circle action and the reduced orbit space inherits the Poisson algebra obtained by restricting the invariant functions to the reduced space. Both spaces reside inside smooth manifolds, which in turn inherit almost Poisson structures from the Poisson varieties. In this paper we consider...

Linearization and star products

Veronique Chloup (2000)

Banach Center Publications

The aim of this paper is to give an overview concerning the problem of linearization of Poisson structures, more precisely we give results concerning Poisson-Lie groups and we apply those cohomological techniques to star products.

Linearization of Poisson actions and singular values of matrix products

Anton Alekseev, Eckhard Meinrenken, Chris Woodward (2001)

Annales de l’institut Fourier

We prove that the linearization functor from the category of Hamiltonian K -actions with group-valued moment maps in the sense of Lu, to the category of ordinary Hamiltonian K - actions, preserves products up to symplectic isomorphism. As an application, we give a new proof of the Thompson conjecture on singular values of matrix products and extend this result to the case of real matrices. We give a formula for the Liouville volume of these spaces and obtain from it a hyperbolic version of the Duflo...

Linking and the Morse complex

Michael Usher (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

For a Morse function f on a compact oriented manifold M , we show that f has more critical points than the number required by the Morse inequalities if and only if there exists a certain class of link in M whose components have nontrivial linking number, such that the minimal value of f on one of the components is larger than its maximal value on the other. Indeed we characterize the precise number of critical points of f in terms of the Betti numbers of M and the behavior of f with respect to links....

Lissajous knots and billiard knots

Vaughan Jones, Józef Przytycki (1998)

Banach Center Publications

We show that Lissajous knots are equivalent to billiard knots in a cube. We consider also knots in general 3-dimensional billiard tables. We analyse symmetry of knots in billiard tables and show in particular that the Alexander polynomial of a Lissajous knot is a square modulo 2.

Local reduction theorems and invariants for singular contact structures

Bronislaw Jakubczyk, Michail Zhitomirskii (2001)

Annales de l’institut Fourier

A differential 1-form on a ( 2 k + 1 ) -dimensional manifolds M defines a singular contact structure if the set S of points where the contact condition is not satisfied, S = { p M : ( ω ( d ω ) k ( p ) = 0 } , is nowhere dense in M . Then S is a hypersurface with singularities and the restriction of ω to S can be defined. Our first theorem states that in the holomorphic, real-analytic, and smooth categories the germ of Pfaffian equation ( ω ) generated by ω is determined, up to a diffeomorphism, by its restriction to S , if we eliminate certain degenerated singularities...

Local symplectic algebra of quasi-homogeneous curves

Wojciech Domitrz (2009)

Fundamenta Mathematicae

We study the local symplectic algebra of parameterized curves introduced by V. I. Arnold. We use the method of algebraic restrictions to classify symplectic singularities of quasi-homogeneous curves. We prove that the space of algebraic restrictions of closed 2-forms to the germ of a 𝕂-analytic curve is a finite-dimensional vector space. We also show that the action of local diffeomorphisms preserving the quasi-homogeneous curve on this vector space is determined by the infinitesimal action of...

Logarithmic Poisson cohomology: example of calculation and application to prequantization

Joseph Dongho (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

In this paper we introduce the notions of logarithmic Poisson structure and logarithmic principal Poisson structure. We prove that the latter induces a representation by logarithmic derivation of the module of logarithmic Kähler differentials. Therefore it induces a differential complex from which we derive the notion of logarithmic Poisson cohomology. We prove that Poisson cohomology and logarithmic Poisson cohomology are equal when the Poisson structure is log symplectic. We give an example of...

Maslov indices on the metaplectic group M p ( n )

Maurice De Gosson (1990)

Annales de l'institut Fourier

We use the properties of M p ( n ) to construct functions μ : M p ( n ) Z 8 associated with the elements of the lagrangian grassmannian Λ (n) which generalize the Maslov index on Mp(n) defined by J. Leray in his “Lagrangian Analysis”. We deduce from these constructions the identity between M p ( n ) and a subset of S p ( n ) × Z 8 , equipped with appropriate algebraic and topological structures.

Currently displaying 361 – 380 of 790