Function spaces for somewhat continuous functions
We prove several stability properties for the class of compact Hausdorff spaces such that with the weak or the pointwise topology is in the class of Stegall. In particular, this class is closed under arbitrary products.
We give a partial classification of spaces of continuous real valued functions on ordinals with the topology of pointwise convergence with respect to homeomorphisms and uniform homeomorphisms.
We apply the general theory of -Corson Compact spaces to remove an unnecessary hypothesis of zero-dimensionality from a theorem on polyadic spaces of tightness . In particular, we prove that polyadic spaces of countable tightness are Uniform Eberlein compact spaces.
We show that a completely regular space Y is a p-space (a Čech-complete space, a locally compact space) if and only if given a dense subspace A of any topological space X and a continuous f: A → Y there are a p-embedded subset (resp. a G δ-subset, an open subset) M of X containing A and a quasicontinuous subcontinuous extension f*: M → Y of f continuous at every point of A. A result concerning a continuous extension to a residual set is also given.
A space is functionally countable (FC) if for every continuous , . The class of FC spaces includes ordinals, some trees, compact scattered spaces, Lindelöf P-spaces, -products in , and some L-spaces. We consider the following three versions of functional separability: is 1-FS if it has a dense FC subspace; is 2-FS if there is a dense subspace such that for every continuous , ; is 3-FS if for every continuous , there is a dense subspace such that . We give examples distinguishing...
The concept of the distinguished sets is applied to the investigation of the functionally countable spaces. It is proved that every Baire function on a functionally countable space has a countable image. This is a positive answer to a question of R. Levy and W. D. Rice.
Let be a zero-dimensional space and be the set of all continuous real valued functions on with countable image. In this article we denote by (resp., the set of all functions in with compact (resp., pseudocompact) support. First, we observe that (resp., ), where is the Banaschewski compactification of and is the -compactification of . This implies that for an -compact space , the intersection of all free maximal ideals in is equal to , i.e., . By applying methods of functionally...
For non-empty topological spaces X and Y and arbitrary families ⊆ and we put =f ∈ : (∀ A ∈ )(f[A] ∈ . We examine which classes of functions ⊆ can be represented as . We are mainly interested in the case when is the class of all continuous functions from X into Y. We prove that for a non-discrete Tikhonov space X the class (X,ℝ) is not equal to for any ⊆ and ⊆ (ℝ). Thus, (X,ℝ) cannot be characterized by images of sets. We also show that none of the following classes of...