Displaying 101 – 120 of 241

Showing per page

Jones polynomials, volume and essential knot surfaces: a survey

David Futer, Efstratia Kalfagianni, Jessica S. Purcell (2014)

Banach Center Publications

This paper is a brief overview of recent results by the authors relating colored Jones polynomials to geometric topology. The proofs of these results appear in the papers [18, 19], while this survey focuses on the main ideas and examples.

Les invariants θ p des 3-variétés périodiques

Nafaa Chbili (2001)

Annales de l’institut Fourier

Soit r un entier > 1 . Une 3-variété M est dite r -périodique si et seulement si le groupe cyclique G = / r agit semi-librement sur M avec un cercle comme l’ensemble des points fixes. Dans cet article, nous utilisons les invariants quantiques θ p pour établir des conditions nécessaires pour qu’une 3-variété soit périodique.

Local coordinates for SL ( n , C ) -character varieties of finite-volume hyperbolic 3-manifolds

Pere Menal-Ferrer, Joan Porti (2012)

Annales mathématiques Blaise Pascal

Given a finite-volume hyperbolic 3-manifold, we compose a lift of the holonomy in SL ( 2 , C ) with the n -dimensional irreducible representation of SL ( 2 , C ) in SL ( n , C ) . In this paper we give local coordinates of the SL ( n , C ) -character variety around the character of this representation. As a corollary, this representation is isolated among all representations that are unipotent at the cusps.

Local rigidity of aspherical three-manifolds

Pierre Derbez (2012)

Annales de l’institut Fourier

In this paper we construct, for each aspherical oriented 3 -manifold M , a 2 -dimensional class in the l 1 -homology of M whose norm combined with the Gromov simplicial volume of M gives a characterization of those nonzero degree maps from M to N which are homotopic to a covering map. As an application we characterize those degree one maps which are homotopic to a homeomorphism in term of isometries between the bounded cohomology groups of M and N .

Minoration du spectre des variétés hyperboliques de dimension 3

Pierre Jammes (2012)

Bulletin de la Société Mathématique de France

Soit M une variété hyperbolique compacte de dimension 3, de diamètre  d et de volume V . Si on note μ i ( M ) la i -ième valeur propre du laplacien de Hodge-de Rham agissant sur les 1-formes coexactes de M , on montre que μ 1 ( M ) c d 3 e 2 k d et μ k + 1 ( M ) c d 2 , où c > 0 est une constante ne dépendant que de V , et k est le nombre de composantes connexes de la partie mince de M . En outre, on montre que pour toute 3-variété hyperbolique M de volume fini avec cusps, il existe une suite M i de remplissages compacts de M , de diamètre d i + telle que et μ 1 ( M i ) c d i 2 .

Currently displaying 101 – 120 of 241