Displaying 361 – 380 of 1631

Showing per page

Croissance uniforme dans les groupes hyperboliques

Malik Koubi (1998)

Annales de l'institut Fourier

On montre qu’un groupe hyperbolique G non élémentaire est à croissance uniformément exponentielle, c’est-à-dire qu’il existe une constante c G strictement plus grande que 1, ne dépendant que du groupe G , telle que le taux de croissance exponentiel de G relatif à n’importe quel système générateur est plus grand que c G . On redémontre ce faisant qu’un groupe hyperbolique n’a qu’un nombre fini de classes de conjugaison de sous-groupes finis.

Cross ratios, surface groups, P S L ( n , 𝐑 ) and diffeomorphisms of the circle

François Labourie (2007)

Publications Mathématiques de l'IHÉS

This article relates representations of surface groups to cross ratios. We first identify a connected component of the space of representations into PSL(n,ℝ) – known as the n-Hitchin component– to a subset of the set of cross ratios on the boundary at infinity of the group. Similarly, we study some representations into C 1 , h ( 𝕋 ) Diff h ( 𝕋 ) associated to cross ratios and exhibit a “character variety” of these representations. We show that this character variety contains alln-Hitchin components as well as the set of...

Crosscaps and knots.

Clark, Bradd Evans (1978)

International Journal of Mathematics and Mathematical Sciences

Cyclic branched coverings and homology 3-spheres with large group actions

Bruno P. Zimmermann (2004)

Fundamenta Mathematicae

We show that, if the covering involution of a 3-manifold M occurring as the 2-fold branched covering of a knot in the 3-sphere is contained in a finite nonabelian simple group G of diffeomorphisms of M, then M is a homology 3-sphere and G isomorphic to the alternating or dodecahedral group 𝔸₅ ≅ PSL(2,5). An example of such a 3-manifold is the spherical Poincaré sphere. We construct hyperbolic analogues of the Poincaré sphere. We also give examples of hyperbolic ℤ₂-homology 3-spheres with PSL(2,q)-actions,...

Cyclic branched coverings of 2-bridge knots.

Alberto Cavicchioli, Beatrice Ruini, Fulvia Spaggiari (1999)

Revista Matemática Complutense

In this paper we study the connections between cyclic presentations of groups and the fundamental group of cyclic branched coverings of 2-bridge knots. Then we show that the topology of these manifolds (and knots) arises, in a natural way, from the algebraic properties of such presentations.

Cyclic branched coverings of knots and homology spheres.

Francisco González-Acuña, Hamish Short (1991)

Revista Matemática de la Universidad Complutense de Madrid

We study cyclic coverings of S3 branched over a knot, and study conditions under which the covering is a homology sphere. We show that the sequence of orders of the first homology groups for a given knot is either periodic of tends to infinity with the order of the covering, a result recently obtained independently by Riley. From our computations it follows that, if surgery on a knot k with less than 10 crossings produces a manifold with cyclic fundamental group, then k is a torus knot.

Currently displaying 361 – 380 of 1631