Plane curves associated to character varieties of 3-manifolds.
Nous montrons que le sous-groupe des points fixes d’un automorphisme d’un groupe hyperbolique au sens de M. Gromov est de type fini.
Let L = X U Y be an oriented 2-component link in S3. In this paper we will define two different types of polynomials which are ambient isotopic invariants of L. One is associated with a cyclic cover branched along one of their components, an the other is associated with a metabelian cover of L. This invariants are defined for any link unless the linking number lk(X,Y), is ±1.
The Homflypt and Kauffman skein modules of the projective space are computed. Both are free and generated by some infinite set of links. This set may be chosen to be {Lₙ: n ∈ ℕ ∪ {0}}, where Lₙ is an arbitrary link consisting of n projective lines for n > 0, and L₀ is an affine unknot.
Using the recent Gauß diagram formulas for Vassiliev invariants of Polyak-Viro-Fiedler and combining these formulas with the Bennequin inequality, we prove several inequalities for positive knots relating their Vassiliev invariants, genus and degrees of the Jones polynomial. As a consequence, we prove that for any of the polynomials of Alexander/Conway, Jones, HOMFLY, Brandt-Lickorish-Millett-Ho and Kauffman there are only finitely many positive knots with the same polynomial and no positive knot...
We extend and generalise Sergiescu's results on planar graphs and presentations for the braid group Bₙ to other topological generalisations of Bₙ.
Nous présentons la preuve de la conjecture de Poincaré, concernant les variétés compactes simplement connexes de dimension , proposée par G. Perel’man. Elle repose sur l’étude de l’évolution de métriques riemanniennes sous le flot de la courbure de Ricci et sur les travaux antérieurs de R. Hamilton. Après une introduction aux techniques analytiques et géométriques développées par R. Hamilton, nous tentons de décrire la méthode de chirurgie métrique utilisée par G. Perel’man pour franchir les temps...