Simple geodesics on surfaces of genus 2.
We define the singular Hecke algebra as the quotient of the singular braid monoid algebra by the Hecke relations , . We define the notion of Markov trace in this context, fixing the number of singular points, and we prove that a Markov trace determines an invariant on the links with singular points which satisfies some skein relation. Let denote the set of Markov traces with singular points. This is a -vector space. Our main result is that is of dimension . This result is completed...
We define for each group G the skein algebra of G. We show how it is related to the Kauffman bracket skein modules. We prove that skein algebras of abelian groups are isomorphic to symmetric subalgebras of corresponding group rings. Moreover, we show that, for any abelian group G, homomorphisms from the skein algebra of G to C correspond exactly to traces of SL(2,C)-representations of G. We also solve, for abelian groups, the conjecture of Bullock on SL(2,C) character varieties of groups - we show...
We use the topological invariant of spatial graphs introduced by S. Yamada to find necessary conditions for a spatial graph to be periodic with a prime period. The proof of the main result is based on computing the Yamada skein algebra of the solid torus and then proving that it injects into the Kauffman bracket skein algebra of the solid torus.