Geschlecht von Knoten mit zwei Brücken und die Faserbarkeit ihrer Außenräume.
J. Maher a montré qu’une variété hyperbolique de dimension compacte sans bord, connexe et orientable fibre virtuellement sur le cercle si et seulement si elle admet une famille infinie de revêtements finis de genre de Heegaard borné. En s’appuyant sur la démonstration de Maher, cet article présente un théorème donnant une condition suffisante pour qu’un revêtement fini d’une variété hyperbolique compacte de dimension contienne une fibre virtuelle, qui s’exprime en fonction du degré du revêtement...
The homology theory of colored posets, defined by B. Everitt and P. Turner, is generalized. Two graph categories are defined and Khovanov type graph cohomology are interpreted as Ext* groups in functor categories associated to these categories. The connection, described by J. H. Przytycki, between the Hochschild homology of an algebra and the graph cohomology, defined for the same algebra and a cyclic graph, is explained from the point of view of homological algebra in functor categories.
We calculate the leading term of the rational lift of the Kontsevich integral, , introduced by Garoufalidis and Kricker, on the boundary of an embedded grope of class, 2n. We observe that it lies in the subspace spanned by connected diagrams of Euler degree 2n-2 and with a bead t-1 on a single edge. This places severe algebraic restrictions on the sort of knots that can bound gropes, and in particular implies the two main results of the author’s thesis [1], at least over the rationals.
Nous proposons une caractérisation géométrique des variétés de dimension ayant des groupes fondamentaux dont toutes les classes de conjugaison autres que sont infinies, c’est-à-dire dont les algèbres de von Neumann sont des facteurs de type : ce sont essentiellement les -variétés à groupes fondamentaux infinis qui n’admettent pas de fibration de Seifert. Autrement dit et plus précisément, soient une -variété connexe compacte et son groupe fondamental, qu’on suppose être infini et avec...
Hass, Rubinstein, and Scott showed that every closed aspherical (irreducible) 3-manifold whose fundamental group contains the fundamental group of a closed aspherical surface, is covered by Euclidean space. This theorem does not generalize to higher dimensions. However, we provide geometric tools with which variations of this theorem can be proved in all dimensions.