Plane curve singularities and carousels
In this paper we give a direct and explicit description of the local topological embedding of a plane curve singularity using the Puiseux expansions of its branches in a given set of coordinates.
In this paper we give a direct and explicit description of the local topological embedding of a plane curve singularity using the Puiseux expansions of its branches in a given set of coordinates.
Let be a smooth projective surface, the canonical divisor, a very ample divisor and the moduli space of rank-two vector bundles, -stable with Chern classes and . We prove that, if there exists such that is numerically equivalent to and if is even, greater or equal to , then there is no Poincaré bundle on . Conversely, if there exists such that the number is odd or if is odd, then there exists a Poincaré bundle on .
Si dimostra che per le varietà a struttura quaternionale generalizzata integrabile, le classi di Pontrjagin sono generate dalle classi di Pontrjagin del fibrato vettoriale fondamentale.
Combining the approach to Thom polynomials via classifying spaces of singularities with the Fulton-Lazarsfeld theory of cone classes and positive polynomials for ample vector bundles, we show that the coefficients of the Schur function expansions of the Thom polynomials of stable singularities are nonnegative with positive sum.