Knot Floer homology and the four-ball genus.
Using Hausmann and Vogel's homology sphere bundle interpretation of algebraic K-theory, we construct K-theory invariants by a theory of characteristic classes for flat bundles. It is shown that the Borel classes are detected this way, as well as the rational K-theory of integer group rings of finite groups.
The contents of the article represents the minicourse which was delivered at the 7th conference "Geometry and Topology of Manifolds. The Mathematical Legacy of Charles Ehresmann", Będlewo (Poland), 8.05.2005 - 15.05.2005. The article includes the description of the so called Hirzebruch formula in different aspects which lead to a basic list of problems related to noncommutative geometry and topology. In conclusion, two new problems are presented: about almost flat bundles and about the Noether decomposition...
We extend some results by Goldshtein, Kuzminov, and Shvedov about the -cohomology of warped cylinders to -cohomology for . As an application, we establish some sufficient conditions for the nontriviality of the -torsion of a surface of revolution.
In [C2], Baum-Connes state a conjecture for the K-theory of C*-algebras of foliations. This conjecture has been proved by T. Natsume [N2] for C∞-codimension one foliations without holonomy on a closed manifold. We propose here another proof of the conjecture for this class of foliations, more geometric and based on the existence of the Thom isomorphism, proved by A. Connes in [C3]. The advantage of this approach is that the result will be valid for all C0-foliations.
Soit un feuilletage singulier d’une surface compacte . Pour analyser la dynamique de , on décompose de façon canonique en sous-surfaces bordées par des courbes transverses à : les composantes de la récurrence de (ensembles quasiminimaux) sont contenues dans les “régions de récurrence” et peuvent être étudiées séparément; par contre dans les autres régions, dites “régions de passage”, la dynamique est triviale. On propose ensuite une définition des feuilletages singuliers de classe sur...
La catégorie des fibrés vectoriels sur les variétés linéaires par morceaux se plonge dans une catégorie des classes d’équivalence de faisceaux de modules sur les faisceaux de germes des fonctions lissables, et on construit les classes de Pontrjagin, vérifiant des axiomes habituels. Chaque variété possède un objet tangent dans cette catégorie, et est la classe totale de Pontrjagin associée à .