Displaying 1021 – 1040 of 2024

Showing per page

Modular classes of Q-manifolds: a review and some applications

Andrew James Bruce (2017)

Archivum Mathematicum

A Q-manifold is a supermanifold equipped with an odd vector field that squares to zero. The notion of the modular class of a Q-manifold – which is viewed as the obstruction to the existence of a Q-invariant Berezin volume – is not well know. We review the basic ideas and then apply this technology to various examples, including L -algebroids and higher Poisson manifolds.

Moduli Spaces of PU ( 2 ) -Instantons on Minimal Class VII Surfaces with b 2 = 1

Konrad Schöbel (2008)

Annales de l’institut Fourier

We describe explicitly the moduli spaces g pst ( S , E ) of polystable holomorphic structures with det 𝒦 on a rank two vector bundle E with c 1 ( E ) = c 1 ( K ) and c 2 ( E ) = 0 for all minimal class VII surfaces S with b 2 ( S ) = 1 and with respect to all possible Gauduchon metrics g . These surfaces S are non-elliptic and non-Kähler complex surfaces and have recently been completely classified. When S is a half or parabolic Inoue surface, g pst ( S , E ) is always a compact one-dimensional complex disc. When S is an Enoki surface, one obtains a complex disc with finitely...

Currently displaying 1021 – 1040 of 2024