A singular Riemann-Roch for Hirzebruch characteristics
To calculate the zeros of a map f : Rn → Rn we consider the class of triangulations of Rn so that a certain point belongs to a simplex of fixed diameter and dimension. In this paper two types of this new class of triangulations are constructed and shown to be useful to calculate zeros of piecewise linear approximations of f.
The aim of this paper is to introduce a spectral sequence that converges to the cobordism groups of orbifolds with given isotropy representations. In good cases the E¹-term of this spectral sequence is given by a certain cobordism group of orbibundles over purely ineffective orbifolds which can be identified with the bordism group of the classifying space of the Weyl group of a finite subgroup of O(n). We use this spectral sequence to calculate some cobordism groups of orbifolds for low dimensions,...
Here we show that a Kupka component of a codimension 1 singular foliation of with not a square is a complete intersection. The result implies the existence of a meromorphic first integral of .
Here we show that a Kupka component of a codimension 1 singular foliation of is a complete intersection. The result implies the existence of a meromorphic first integral of . The result was previously known if was assumed to be not a square.
A topological result for non-Hausdorff spaces is proved and used to obtain a non-equivalence theorem for pseudogroups of local transformations. This theorem is applied to the holonomy pseudogroup of foliations.