Displaying 1421 – 1440 of 2026

Showing per page

Remarks on minimal round functions

Georgi Khimshiashvili, Dirk Siersma (2003)

Banach Center Publications

We describe the structure of minimal round functions on compact closed surfaces and three-dimensional manifolds. The minimal possible number of critical loops is determined and typical non-equisingular round function germs are interpreted in the spirit of isolated line singularities. We also discuss a version of Lusternik-Schnirelmann theory suitable for round functions.

Remarks on the symmetries of planar fronts.

F. Aicardi (1995)

Revista Matemática de la Universidad Complutense de Madrid

A front is the projection on the plane of a Legendrian immersion of a circle in the space of the contact elements of that plane. I analyze the symmetries of a generic front with respect to the group generated by the involutions reversing the orientation of the plane, the orientation of the preimage circle and the coorientation of the contact plane.

Representations of the Kauffman bracket skein algebra of the punctured torus

Jea-Pil Cho, Răzvan Gelca (2014)

Fundamenta Mathematicae

We describe the action of the Kauffman bracket skein algebra on some vector spaces that arise as relative Kauffman bracket skein modules of tangles in the punctured torus. We show how this action determines the Reshetikhin-Turaev representation of the punctured torus. We rephrase our results to describe the quantum group quantization of the moduli space of flat SU(2)-connections on the punctured torus with fixed trace of the holonomy around the boundary.

Résidus des connexions à singularités et classes caractéristiques

Daniel Lehmann (1981)

Annales de l'institut Fourier

Un “théorème des résidus” est donné, qui exprime les classes caractéristiques réelles de dimension 2 k d’un fibré principal C à l’aide d’une connexion définie seulement au-dessus d’un voisinage du ( 2 k - 1 ) -squelette d’une triangulation de la base. Ce théorème coiffe simultanément la théorie de Chern-Weil, la théorie de l’obstruction modulo torsion, ainsi que des formules du type Riemann-Hurwitz pour les revêtements ramifiés.

Résidus des sous-variétés invariantes d'un feuilletage singulier

Daniel Lehmann (1991)

Annales de l'institut Fourier

Une formule de résidus est demontrée pour les classes caractéristiques de degré suffisamment grand du fibré normal à une sous variété lisse V d’une variété W , invariante relativement à un feuilletage avec singularités dans W . En particulier, dans le cas analytique complexe, et pour les feuilletages dont les feuilles sont de dimension complexe 1, les nombres de Chern du fibre normal à la sous-variété V sont calculés en termes de résidus de Grothendieck, par une formule qui généralise au cas de dimensions...

Resolutions of moduli spaces and homological stability

Oscar Randal-Williams (2016)

Journal of the European Mathematical Society

We describe partial semi-simplicial resolutions of moduli spaces of surfaces with tangential structure. This allows us to prove a homological stability theorem for these moduli spaces, which often improves the known stability ranges and gives explicit stability ranges in many new cases. In each of these cases the stable homology can be identified using the methods of Galatius, Madsen, Tillmann and Weiss.

Currently displaying 1421 – 1440 of 2026