Displaying 1441 – 1460 of 2026

Showing per page

Riemannian foliations with parallel or harmonic basic forms

Fida El Chami, Georges Habib, Roger Nakad (2015)

Archivum Mathematicum

In this paper, we consider a Riemannian foliation that admits a nontrivial parallel or harmonic basic form. We estimate the norm of the O’Neill tensor in terms of the curvature data of the whole manifold. Some examples are then given.

Riemannian manifolds not quasi-isometric to leaves in codimension one foliations

Paul A. Schweitzer (2011)

Annales de l’institut Fourier

Every open manifold L of dimension greater than one has complete Riemannian metrics g with bounded geometry such that ( L , g ) is not quasi-isometric to a leaf of a codimension one foliation of a closed manifold. Hence no conditions on the local geometry of ( L , g ) suffice to make it quasi-isometric to a leaf of such a foliation. We introduce the ‘bounded homology property’, a semi-local property of ( L , g ) that is necessary for it to be a leaf in a compact manifold in codimension one, up to quasi-isometry. An essential...

Rigidity and gluing for Morse and Novikov complexes

Octav Cornea, Andrew Ranicki (2003)

Journal of the European Mathematical Society

We obtain rigidity and gluing results for the Morse complex of a real-valued Morse function as well as for the Novikov complex of a circle-valued Morse function. A rigidity result is also proved for the Floer complex of a hamiltonian defined on a closed symplectic manifold ( M , ω ) with c 1 | π 2 ( M ) = [ ω ] | π 2 ( M ) = 0 . The rigidity results for these complexes show that the complex of a fixed generic function/hamiltonian is a retract of the Morse (respectively Novikov or Floer) complex of any other sufficiently C 0 close generic function/hamiltonian....

Scalar curvature and connected sums of self-dual 4-manifolds

Mustafa Kalafat (2011)

Journal of the European Mathematical Society

Under a reasonable vanishing hypothesis, Donaldson and Friedman proved that the connected sum of two self-dual Riemannian 4-manifolds is again self-dual. Here we prove that the same result can be extended to the positive scalar curvature case. This is an analogue of the classical theorem of Gromov–Lawson and Schoen–Yau in the self-dual category. The proof is based on twistor theory.

Schur and Schubert polynomials as Thom polynomials-cohomology of moduli spaces

László Fehér, Richárd Rimányi (2003)

Open Mathematics

The theory of Schur and Schubert polynomials is revisited in this paper from the point of view of generalized Thom polynomials. When we apply a general method to compute Thom polynomials for this case we obtain a new definition for (double versions of) Schur and Schubert polynomials: they will be solutions of interpolation problems.

Currently displaying 1441 – 1460 of 2026