Displaying 141 – 160 of 230

Showing per page

On the group of real analytic diffeomorphisms

Takashi Tsuboi (2009)

Annales scientifiques de l'École Normale Supérieure

The group of real analytic diffeomorphisms of a real analytic manifold is a rich group. It is dense in the group of smooth diffeomorphisms. Herman showed that for the n -dimensional torus, its identity component is a simple group. For U ( 1 ) fibered manifolds, for manifolds admitting special semi-free U ( 1 ) actions and for 2- or 3-dimensional manifolds with nontrivial U ( 1 ) actions, we show that the identity component of the group of real analytic diffeomorphisms is a perfect group.

On the Heegaard genus of contact 3-manifolds

Burak Ozbagci (2011)

Open Mathematics

It is well-known that the Heegaard genus is additive under connected sum of 3-manifolds. We show that the Heegaard genus of contact 3-manifolds is not necessarily additive under contact connected sum. We also prove some basic properties of the contact genus (a.k.a. open book genus [Rubinstein J.H., Comparing open book and Heegaard decompositions of 3-manifolds, Turkish J. Math., 2003, 27(1), 189–196]) of 3-manifolds, and compute this invariant for some 3-manifolds.

On the homotopy type of Diff ( M n ) and connected problems

Dan Burghelea (1973)

Annales de l'institut Fourier

This paper reports on some results concerning:a) The homotopy type of the group of diffeomorphisms Diff ( M n ) of a differentiable compact manifold M n (with C -topology).b) the result of the homotopy comparison of this space with the group of all homeomorphisms Homeo M n (with C o -topology). As a biproduct, one gets new facts about the homotopy groups of Diff ( D n , D n ) , Top n , Top n / O n and about the number of connected components of the space of topological and combinatorial pseudoisotopies.The results are contained in Section 1 and Section...

On the intersection forms of closed 4-manifolds.

Alberto Cavicchioli, Friedrich Hegenbarth (1992)

Publicacions Matemàtiques

Given a closed 4-manifold M, let M* be the simply-connected 4-manifold obtained from M by killing the fundamental group. We study the relation between the intersection forms λM and λM*. Finally some topological consequences and examples are described.

Currently displaying 141 – 160 of 230