Displaying 161 – 180 of 230

Showing per page

On the linearization theorem for proper Lie groupoids

Marius Crainic, Ivan Struchiner (2013)

Annales scientifiques de l'École Normale Supérieure

We revisit the linearization theorems for proper Lie groupoids around general orbits (statements and proofs). In the fixed point case (known as Zung’s theorem) we give a shorter and more geometric proof, based on a Moser deformation argument. The passage to general orbits (Weinstein) is given a more conceptual interpretation: as a manifestation of Morita invariance. We also clarify the precise statements of the Linearization Theorem (there has been some confusion on this, which has propagated throughout...

On the non-invariance of span and immersion co-dimension for manifolds

Diarmuid J. Crowley, Peter D. Zvengrowski (2008)

Archivum Mathematicum

In this note we give examples in every dimension m 9 of piecewise linearly homeomorphic, closed, connected, smooth m -manifolds which admit two smoothness structures with differing spans, stable spans, and immersion co-dimensions. In dimension 15 the examples include the total spaces of certain 7 -sphere bundles over S 8 . The construction of such manifolds is based on the topological variance of the second Pontrjagin class: a fact which goes back to Milnor and which was used by Roitberg to give examples...

Currently displaying 161 – 180 of 230