Linear connections for systems of second-order ordinary differential equations
In this paper we study the geometry of direct connections in smooth vector bundles (see N. Teleman [Tn.3]); we show that the infinitesimal part, , of a direct connection τ is a linear connection. We determine the curvature tensor of the associated linear connection As an application of these results, we present a direct proof of N. Teleman’s Theorem 6.2 [Tn.3], which shows that it is possible to represent the Chern character of smooth vector bundles as the periodic cyclic homology class of a...
We give a classification of all linear natural operators transforming affinors on each n-dimensional manifold M into affinors on , where is the product preserving bundle functor given by a Weil algebra A, under the condition that n ≥ 2.
The paper contains a classification of linear liftings of skew symmetric tensor fields of type on -dimensional manifolds to tensor fields of type on Weil bundles under the condition that It complements author’s paper “Linear liftings of symmetric tensor fields of type to Weil bundles” (Ann. Polon. Math. 92, 2007, pp. 13–27), where similar liftings of symmetric tensor fields were studied. We apply this result to generalize that of author’s paper “Affine liftings of torsion-free connections...
We define equivariant tensors for every non-negative integer and every Weil algebra and establish a one-to-one correspondence between the equivariant tensors and linear natural operators lifting skew-symmetric tensor fields of type on an -dimensional manifold to tensor fields of type on if . Moreover, we determine explicitly the equivariant tensors for the Weil algebras , where and are non-negative integers.
This paper contains a classification of all linear liftings of symmetric tensor fields of type (1,2) on n-dimensional manifolds to any tensor fields of type (1,2) on Weil bundles under the condition that n ≥ 3.
We give a classification of all linear natural operators transforming -vectors (i.e., skew-symmetric tensor fields of type ) on -dimensional manifolds to tensor fields of type on , where is a Weil bundle, under the condition that , and . The main result of the paper states that, roughly speaking, each linear natural operator lifting -vectors to tensor fields of type on is a sum of operators obtained by permuting the indices of the tensor products of linear natural operators lifting...
We show the change of coordinates that maps the maximally symmetric -distribution given by solutions to the and generalised Chazy equation to the flat Cartan distribution. This establishes the local equivalence between the maximally symmetric and generalised Chazy distribution and the flat Cartan or Hilbert-Cartan distribution. We give the set of vector fields parametrised by solutions to the and generalised Chazy equation and the corresponding Ricci-flat conformal scale that bracket-generate...
A differential 1-form on a -dimensional manifolds defines a singular contact structure if the set of points where the contact condition is not satisfied, , is nowhere dense in . Then is a hypersurface with singularities and the restriction of to can be defined. Our first theorem states that in the holomorphic, real-analytic, and smooth categories the germ of Pfaffian equation generated by is determined, up to a diffeomorphism, by its restriction to , if we eliminate certain degenerated singularities...
In this work we consider a class of germs of singularities of integrable 1-forms in which are structurally stable in class ( if , if ), whose 1-jet is zero at the singularity. In this class the stability depends essentially on the fact that the perturbations allowed are integrable.
We study the local symplectic algebra of parameterized curves introduced by V. I. Arnold. We use the method of algebraic restrictions to classify symplectic singularities of quasi-homogeneous curves. We prove that the space of algebraic restrictions of closed 2-forms to the germ of a 𝕂-analytic curve is a finite-dimensional vector space. We also show that the action of local diffeomorphisms preserving the quasi-homogeneous curve on this vector space is determined by the infinitesimal action of...
We introduce the concept of conserved current variationally associated with locally variational invariant field equations. The invariance of the variation of the corresponding local presentation is a sufficient condition for the current beeing variationally equivalent to a global one. The case of a Chern-Simons theory is worked out and a global current is variationally associated with a Chern-Simons local Lagrangian.
Let be a holomorphic family of functions. If , is an analytic variety then is a natural generalization of the bifurcation variety of G. We investigate the local structure of for locally trivial deformations of . In particular, we construct an algorithm for determining logarithmic stratifications provided G is versal.