Majorations affines du nombre de zéros d'intégrales abéliennes pour les hamiltoniens quartiques elliptiques
We prove existence of minimizing movements for the dislocation dynamics evolution law of a propagating front, in which the normal velocity of the front is the sum of a non-local term and a mean curvature term. We prove that any such minimizing movement is a weak solution of this evolution law, in a sense related to viscosity solutions of the corresponding level-set equation. We also prove the consistency of this approach, by showing that any minimizing movement coincides with the smooth evolution...
A mixed formulation is given for elastic problems. Existence and uniqueness of the discretized problem are given for conformal continuous interpolations for the stress tensor components and for the components of the displacement vector. A counterpart of the problem is discussed in the case of an even-dimensional Euclidean space with an associated Hamiltonian vector field and the Poisson structure. For conformal interpolations of the same order the question remains open.
In this paper we introduce the notion of modified Nash triviality for a family of zero sets of real polynomial map-germs as a desirable one. We first give a Nash isotopy lemma which is a useful tool to show triviality.Then, using it, we prove two types of modified Nash triviality theorem and a finite classification theorem for this triviality. These theorems strengthen similar topological results.
A Q-manifold is a supermanifold equipped with an odd vector field that squares to zero. The notion of the modular class of a Q-manifold – which is viewed as the obstruction to the existence of a Q-invariant Berezin volume – is not well know. We review the basic ideas and then apply this technology to various examples, including -algebroids and higher Poisson manifolds.
We define and make an initial study of (even) Riemannian supermanifolds equipped with a homological vector field that is also a Killing vector field. We refer to such supermanifolds as Riemannian Q-manifolds. We show that such Q-manifolds are unimodular, i.e., come equipped with a Q-invariant Berezin volume.
We show that a modular class arises from the existence of two generating operators for a Batalin-Vilkovisky algebra. In particular, for every triangular Lie bialgebroid (A,P) such that its top exterior power is a trivial line bundle, there is a section of the vector bundle A whose -cohomology class is well-defined. We give simple proofs of its properties. The modular class of an orientable Poisson manifold is an example. We analyse the relationships between generating operators of the Gerstenhaber...
Motivated by the two dimensional conformal field theory with gauge symmetry, we shall study the monodromy of the integrable connections associated with the simple Lie algebras. This gives a series of linear representations of the braid group whose explicit form is described by solutions of the quantum Yang-Baxter equation.
Since the mid-nineties it has gradually become understood that the Cartan prolongation of rank 2 distributions is a key operation leading locally, when applied many times, to all so-called Goursat distributions. That is those, whose derived flag of consecutive Lie squares is a 1-flag (growing in ranks always by 1). We first observe that successive generalized Cartan prolongations (gCp) of rank k + 1 distributions lead locally to all special k-flags: rank k + 1 distributions D with the derived...