Variational Inequalities with One-Sided Irregular Obstacles.
We will pose the inverse problem question within the Krupka variational sequence framework. In particular, the interplay of inverse problems with symmetry and invariance properties will be exploited considering that the cohomology class of the variational Lie derivative of an equivalence class of forms, closed in the variational sequence, is trivial. We will focalize on the case of symmetries of globally defined field equations which are only locally variational and prove that variations of local...
We discuss the asymptotics of the parabolic Ginzburg-Landau equation in dimension Our only asumption on the initial datum is a natural energy bound. Compared to the case of “well-prepared” initial datum, this induces possible new energy modes which we analyze, and in particular their mutual interaction. The two dimensional case is qualitatively different and requires a separate treatment.
We provide a mathematical proof of the existence of traveling vortex rings solutions to the Gross–Pitaevskii (GP) equation in dimension . We also extend the asymptotic analysis of the free field Ginzburg–Landau equation to a larger class of equations, including the Ginzburg–Landau equation for superconductivity as well as the traveling wave equation for GP. In particular we rigorously derive a curvature equation for the concentration set (i.e. line vortices if ).
We consider a class of fourth order elliptic systems which include the Euler-Lagrange equations of biharmonic mappings in dimension 4 and we prove that a weak limit of weak solutions to such systems is again a weak solution to a limit system.
In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation , where are periodic in for and 0 is in a gap of the spectrum of ; . If for an appropriate constant , we show that this equation has a nontrivial solution.
In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation , where N ≥ 4; V,K,g are periodic in xj for 1 ≤ j ≤ N and 0 is in a gap of the spectrum of -Δ + V; K>0. If for an appropriate constant c, we show that this equation has a nontrivial solution.
In this note we introduce a Yang-Mills bar equation on complex vector bundles provided with a Hermitian metric over compact Hermitian manifolds. According to the Koszul-Malgrange criterion any holomorphic structure on can be seen as a solution to this equation. We show the existence of a non-trivial solution to this equation over compact Kähler manifolds as well as a short time existence of a related negative Yang-Mills bar gradient flow. We also show a rigidity of holomorphic connections among...