Displaying 1121 – 1140 of 1170

Showing per page

Variations by generalized symmetries of local Noether strong currents equivalent to global canonical Noether currents

Marcella Palese (2016)

Communications in Mathematics

We will pose the inverse problem question within the Krupka variational sequence framework. In particular, the interplay of inverse problems with symmetry and invariance properties will be exploited considering that the cohomology class of the variational Lie derivative of an equivalence class of forms, closed in the variational sequence, is trivial. We will focalize on the case of symmetries of globally defined field equations which are only locally variational and prove that variations of local...

Vortex motion and phase-vortex interaction in dissipative Ginzburg-Landau dynamics

F. Bethuel, G. Orlandi, D. Smets (2004)

Journées Équations aux dérivées partielles

We discuss the asymptotics of the parabolic Ginzburg-Landau equation in dimension N 2 . Our only asumption on the initial datum is a natural energy bound. Compared to the case of “well-prepared” initial datum, this induces possible new energy modes which we analyze, and in particular their mutual interaction. The two dimensional case is qualitatively different and requires a separate treatment.

Vortex rings for the Gross-Pitaevskii equation

Fabrice Bethuel, G. Orlandi, Didier Smets (2004)

Journal of the European Mathematical Society

We provide a mathematical proof of the existence of traveling vortex rings solutions to the Gross–Pitaevskii (GP) equation in dimension N 3 . We also extend the asymptotic analysis of the free field Ginzburg–Landau equation to a larger class of equations, including the Ginzburg–Landau equation for superconductivity as well as the traveling wave equation for GP. In particular we rigorously derive a curvature equation for the concentration set (i.e. line vortices if N = 3 ).

Weak linking theorems and Schrödinger equations with critical Sobolev exponent

Martin Schechter, Wenming Zou (2003)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation - Δ u + V ( x ) u = K ( x ) | u | 2 * - 2 u + g ( x , u ) , u W 1 , 2 ( 𝐑 N ) , where N 4 ; V , K , g are periodic in x j for 1 j N and 0 is in a gap of the spectrum of - Δ + V ; K > 0 . If 0 < g ( x , u ) u c | u | 2 * for an appropriate constant c , we show that this equation has a nontrivial solution.

Weak Linking Theorems and Schrödinger Equations with Critical Sobolev Exponent

Martin Schechter, Wenming Zou (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation - Δ u + V ( x ) u = K ( x ) | u | 2 * - 2 u + g ( x , u ) , u W 1 , 2 ( 𝐑 N ) , where N ≥ 4; V,K,g are periodic in xj for 1 ≤ j ≤ N and 0 is in a gap of the spectrum of -Δ + V; K>0. If 0 < g ( x , u ) u c | u | 2 * for an appropriate constant c, we show that this equation has a nontrivial solution.

Yang-Mills bar connections over compact Kähler manifolds

Hông Vân Lê (2010)

Archivum Mathematicum

In this note we introduce a Yang-Mills bar equation on complex vector bundles E provided with a Hermitian metric over compact Hermitian manifolds. According to the Koszul-Malgrange criterion any holomorphic structure on E can be seen as a solution to this equation. We show the existence of a non-trivial solution to this equation over compact Kähler manifolds as well as a short time existence of a related negative Yang-Mills bar gradient flow. We also show a rigidity of holomorphic connections among...

Currently displaying 1121 – 1140 of 1170