Displaying 141 – 160 of 1170

Showing per page

Applications harmoniques entre graphes finis et un théorème de superrigidité

Édouard Lebeau (1996)

Annales de l'institut Fourier

Nous définissons une ntoion d’énergie pour des applications entre deux graphes métriques finis et cherchons à minimiser l’énergie au sein d’une classe d’homotopie. Nous démontrons des théorèmes d’existence et d’unicité analogues à ceux de Eells-Sampson et de Hartman pour les applications harmoniques à valeurs dans les variétés à courbure négative ou nulle. Nous montrons également une propriété de stabilité des applications minimisantes par rapport aux revêtements de degré fini à la source. Une application...

Approximative sequences and almost homoclinic solutions for a class of second order perturbed Hamiltonian systems

Marek Izydorek, Joanna Janczewska (2014)

Banach Center Publications

In this work we will consider a class of second order perturbed Hamiltonian systems of the form q ̈ + V q ( t , q ) = f ( t ) , where t ∈ ℝ, q ∈ ℝⁿ, with a superquadratic growth condition on a time periodic potential V: ℝ × ℝⁿ → ℝ and a small aperiodic forcing term f: ℝ → ℝⁿ. To get an almost homoclinic solution we approximate the original system by time periodic ones with larger and larger time periods. These approximative systems admit periodic solutions, and an almost homoclinic solution for the original system is obtained...

Aproximation of Z2-cocycles and shift dynamical systems.

I. Filipowicz, J. Kwiatkowski, M. Lemanczyk (1988)

Publicacions Matemàtiques

Let Gbar = G{nt, nt | nt+1, t ≥ 0} be a subgroup of all roots of unity generated by exp(2πi/nt}, t ≥ 0, and let τ: (X, β, μ) O be an ergodic transformation with pure point spectrum Gbar. Given a cocycle φ, φ: X → Z2, admitting an approximation with speed 0(1/n1+ε, ε>0) there exists a Morse cocycle φ such that the corresponding transformations τφ and τψ are relatively isomorphic. An effective way of a construction of the Morse cocycle φ is given. There is a cocycle φ oddly approximated with...

Aubry sets and the differentiability of the minimal average action in codimension one

Ugo Bessi (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Let (x,u,∇u) be a Lagrangian periodic of period 1 in x1,...,xn,u. We shall study the non self intersecting functions u: Rn R minimizing ; non self intersecting means that, if u(x0 + k) + j = u(x0) for some x0∈Rn and (k , j) ∈Zn × Z, then u(x) = u(x + k) + j x. Moser has shown that each of these functions is at finite distance from a plane u = ρ · x and thus has an average slope ρ; moreover, Senn has proven that it is possible to define the average action of u, which is usually called β ( ρ ) since...

Bernstein and De Giorgi type problems: new results via a geometric approach

Alberto Farina, Berardino Sciunzi, Enrico Valdinoci (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We use a Poincaré type formula and level set analysis to detect one-dimensional symmetry of stable solutions of possibly degenerate or singular elliptic equations of the form div a ( | u ( x ) | ) u ( x ) + f ( u ( x ) ) = 0 . Our setting is very general and, as particular cases, we obtain new proofs of a conjecture of De Giorgi for phase transitions in  2 and  3 and of the Bernstein problem on the flatness of minimal area graphs in  3 . A one-dimensional symmetry result in the half-space is also obtained as a byproduct of our analysis. Our approach...

Currently displaying 141 – 160 of 1170