Comportement semi-classique des systèmes ergodiques
We establish a composition calculus for Fourier integral operators associated with a class of smooth canonical relations . These canonical relations, which arise naturally in integral geometry, are such that : is a Whitney fold and : is a blow-down mapping. If , , then a class of pseudodifferential operators with singular symbols. From this follows boundedness of with a loss of 1/4 derivative.
We study the rate of concentration of a Brownian bridge in time one around the corresponding geodesical segment on a Cartan-Hadamard manifold with pinched negative sectional curvature, when the distance between the two extremities tends to infinity. This improves on previous results by A. Eberle, and one of us . Along the way, we derive a new asymptotic estimate for the logarithmic derivative of the heat kernel on such manifolds, in bounded time and with one space parameter...
Je présenterai les résultats d’une étude microlocale détaillée du spectre joint de deux opérateurs h-pseudo-différentiels qui commutent sur une variété de dimension deux en présence d’une singularité dite «focus-focus». L’étude couvre par exemple le cas du pendule sphérique étudié par Duistermaat, ou du fond de la bouteille de champagne, mais les phénomènes observés sont universels. On en observe principalement deux: une accumulation de valeurs propres au voisinage de la singularité en par rapport...
We show that a certain eigenvalue minimization problem in two dimensions for the Laplace operator in conformal classes is equivalent to the composite membrane problem. We again establish such a link in higher dimensions for eigenvalue problems stemming from the critical GJMS operators. New free boundary problems of unstable type arise in higher dimensions linked to the critical GJMS operator. In dimension four, the critical GJMS operator is exactly the Paneitz operator.
It is proved that if an n-dimensional compact connected Riemannian manifold (M,g) with Ricci curvature Ric satisfying 0 < Ric ≤ (n-1)(2-nc/λ₁)c for a constant c admits a nonzero conformal gradient vector field, then it is isometric to Sⁿ(c), where λ₁ is the first nonzero eigenvalue of the Laplacian operator on M. Also, it is observed that existence of a nonzero conformal gradient vector field on an n-dimensional compact connected Einstein manifold forces it to...
Given a three-dimensional manifold with boundary, the Cartan-Hadamard theorem implies that there are obstructions to filling the interior of the manifold with a complete metric of negative curvature. In this paper, we show that any three-dimensional manifold with boundary can be filled conformally with a complete metric satisfying a pinching condition: given any small constant, the ratio of the largest sectional curvature to (the absolute value of) the scalar curvature is less than this constant....