Page 1 Next

Displaying 1 – 20 of 32

Showing per page

Facilitating the Adoption of Unstructured High-Order Methods Amongst a Wider Community of Fluid Dynamicists

P. E. Vincent, A. Jameson (2011)

Mathematical Modelling of Natural Phenomena

Theoretical studies and numerical experiments suggest that unstructured high-order methods can provide solutions to otherwise intractable fluid flow problems within complex geometries. However, it remains the case that existing high-order schemes are generally less robust and more complex to implement than their low-order counterparts. These issues, in conjunction with difficulties generating high-order meshes, have limited the adoption of high-order...

Finite difference scheme for the Willmore flow of graphs

Tomáš Oberhuber (2007)

Kybernetika

In this article we discuss numerical scheme for the approximation of the Willmore flow of graphs. The scheme is based on the finite difference method. We improve the scheme we presented in Oberhuber [Obe-2005-2,Obe-2005-1] which is based on combination of the forward and the backward finite differences. The new scheme approximates the Willmore flow by the central differences and as a result it better preserves symmetry of the solution. Since it requires higher regularity of the solution, additional...

Finite element approximation of a Stefan problem with degenerate Joule heating

John W. Barrett, Robert Nürnberg (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a fully practical finite element approximation of the following degenerate system t ρ ( u ) - . ( α ( u ) u ) σ ( u ) | φ | 2 , . ( σ ( u ) φ ) = 0 subject to an initial condition on the temperature, u , and boundary conditions on both u and the electric potential, φ . In the above ρ ( u ) is the enthalpy incorporating the latent heat of melting, α ( u ) > 0 is the temperature dependent heat conductivity, and σ ( u ) 0 is the electrical conductivity. The latter is zero in the frozen zone, u 0 , which gives rise to the degeneracy in this Stefan system. In addition to showing stability...

Finite element approximation of a Stefan problem with degenerate Joule heating

John W. Barrett, Robert Nürnberg (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a fully practical finite element approximation of the following degenerate system t ρ ( u ) - . ( α ( u ) u ) σ ( u ) | φ | 2 , . ( σ ( u ) φ ) = 0 subject to an initial condition on the temperature, u, and boundary conditions on both u and the electric potential, ϕ. In the above p(u) is the enthalpy incorporating the latent heat of melting, α(u) > 0 is the temperature dependent heat conductivity, and σ(u) > 0 is the electrical conductivity. The latter is zero in the frozen zone, u ≤ 0, which gives rise to the degeneracy in this Stefan...

Finite element approximation of a two-layered liquid film in the presence of insoluble surfactants

John W. Barrett, Linda El Alaoui (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a system of degenerate parabolic equations modelling a thin film, consisting of two layers of immiscible Newtonian liquids, on a solid horizontal substrate. In addition, the model includes the presence of insoluble surfactants on both the free liquid-liquid and liquid-air interfaces, and the presence of both attractive and repulsive van der Waals forces in terms of the heights of the two layers. We show that this system formally satisfies a Lyapunov structure, and a second energy...

Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers

John W. Barrett, Endre Süli (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ℝd, d = 2 or 3, for the velocity...

Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers

John W. Barrett, Endre Süli (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ℝd, d = 2 or 3, for the velocity...

Finite element approximation of kinetic dilute polymer models with microscopic cut-off

John W. Barrett, Endre Süli (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ d ,d= 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....

Finite element approximation of kinetic dilute polymer models with microscopic cut-off

John W. Barrett, Endre Süli (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ d , d = 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....

Finite element solution of a hyperbolic-parabolic problem

Rudolf Hlavička (1994)

Applications of Mathematics

Existence and finite element approximation of a hyperbolic-parabolic problem is studied. The original two-dimensional domain is approximated by a polygonal one (external approximations). The time discretization is obtained using Euler’s backward formula (Rothe’s method). Under certain smoothing assumptions on the data (see (2.6), (2.7)) the existence and uniqueness of the solution and the convergence of Rothe’s functions in the space C ( I ¯ , V ) is proved.

Currently displaying 1 – 20 of 32

Page 1 Next