Displaying 81 – 100 of 481

Showing per page

An adaptive finite element method in reconstruction of coefficients in Maxwell's equations from limited observations

Larisa Beilina, Samar Hosseinzadegan (2016)

Applications of Mathematics

We propose an adaptive finite element method for the solution of a coefficient inverse problem of simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions in the Maxwell's system using limited boundary observations of the electric field in 3D. We derive a posteriori error estimates in the Tikhonov functional to be minimized and in the regularized solution of this functional, as well as formulate the corresponding adaptive algorithm. Our numerical experiments...

An approximate nonlinear projection scheme for a combustion model

Christophe Berthon, Didier Reignier (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE’s, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical finite...

An approximate nonlinear projection scheme for a combustion model

Christophe Berthon, Didier Reignier (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE's, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical finite...

An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier–Stokes flows

Andrea Manzoni (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present the current Reduced Basis framework for the efficient numerical approximation of parametrized steady Navier–Stokes equations. We have extended the existing setting developed in the last decade (see e.g. [S. Deparis, SIAM J. Numer. Anal. 46 (2008) 2039–2067; A. Quarteroni and G. Rozza, Numer. Methods Partial Differ. Equ. 23 (2007) 923–948; K. Veroy and A.T. Patera, Int. J. Numer. Methods Fluids 47 (2005) 773–788]) to more general affine and nonaffine parametrizations (such as volume-based...

An energy analysis of degenerate hyperbolic partial differential equations.

William J. Layton (1984)

Aplikace matematiky

An energy analysis is carried out for the usual semidiscrete Galerkin method for the semilinear equation in the region Ω (E) ( t u t ) t = i , j = 1 ( a i j ( x ) u x i ) x j - a 0 ( x ) u + f ( u ) , subject to the initial and boundary conditions, u = 0 on Ω and u ( x , 0 ) = u 0 . (E) is degenerate at t = 0 and thus, even in the case f 0 , time derivatives of u will blow up as t 0 . Also, in the case where f is locally Lipschitz, solutions of (E) can blow up for t > 0 in finite time. Stability and convergence of the scheme in W 2 , 1 is shown in the linear case without assuming u t t (which can blow up as t 0 is...

An error estimate uniform in time for spectral Galerkin approximations for the equations for the motion of a chemical active fluid.

M. A. Rojas-Medar, S. A. Lorca (1995)

Revista Matemática de la Universidad Complutense de Madrid

We study error estimates and their convergence rates for approximate solutions of spectral Galerkin type for the equations for the motion of a viscous chemical active fluid in a bounded domain. We find error estimates that are uniform in time and also optimal in the L2-norm and H1-norm. New estimates in the H(-1)-norm are given.

An operator-splitting Galerkin/SUPG finite element method for population balance equations : stability and convergence

Sashikumaar Ganesan (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a heterogeneous finite element method for the solution of a high-dimensional population balance equation, which depends both the physical and the internal property coordinates. The proposed scheme tackles the two main difficulties in the finite element solution of population balance equation: (i) spatial discretization with the standard finite elements, when the dimension of the equation is more than three, (ii) spurious oscillations in the solution induced by standard Galerkin approximation...

An operator-splitting Galerkin/SUPG finite element method for population balance equations : stability and convergence

Sashikumaar Ganesan (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a heterogeneous finite element method for the solution of a high-dimensional population balance equation, which depends both the physical and the internal property coordinates. The proposed scheme tackles the two main difficulties in the finite element solution of population balance equation: (i) spatial discretization with the standard finite elements, when the dimension of the equation is more than three, (ii) spurious oscillations in...

An optimal error bound for a finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy

John W. Barrett, James F. Blowey (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Using the approach in [5] for analysing time discretization error and assuming more regularity on the initial data, we improve on the error bound derived in [2] for a fully practical piecewise linear finite element approximation with a backward Euler time discretization of a model for phase separation of a multi-component alloy with non-smooth free energy.

An unconditionally stable finite element scheme for anisotropic curve shortening flow

Klaus Deckelnick, Robert Nürnberg (2023)

Archivum Mathematicum

Based on a recent novel formulation of parametric anisotropic curve shortening flow, we analyse a fully discrete numerical method of this geometric evolution equation. The method uses piecewise linear finite elements in space and a backward Euler approximation in time. We establish existence and uniqueness of a discrete solution, as well as an unconditional stability property. Some numerical computations confirm the theoretical results and demonstrate the practicality of our method.

An unconditionally stable finite element-finite volume pressure correction scheme for the drift-flux model

Laura Gastaldo, Raphaèle Herbin, Jean-Claude Latché (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present in this paper a pressure correction scheme for the drift-flux model combining finite element and finite volume discretizations, which is shown to enjoy essential stability features of the continuous problem: the scheme is conservative, the unknowns are kept within their physical bounds and, in the homogeneous case (i.e. when the drift velocity vanishes), the discrete entropy of the system decreases; in addition, when using for the drift velocity a closure law which takes the form of...

Analysis and finite element error estimates for the velocity tracking problem for Stokes flows via a penalized formulation

Konstantinos Chrysafinos (2004)

ESAIM: Control, Optimisation and Calculus of Variations

A distributed optimal control problem for evolutionary Stokes flows is studied via a pseudocompressibility formulation. Several results concerning the analysis of the velocity tracking problem are presented. Semidiscrete finite element error estimates for the corresponding optimality system are derived based on estimates for the penalized Stokes problem and the BRR (Brezzi-Rappaz-Raviart) theory. Finally, the convergence of the solutions of the penalized optimality systems as ε 0 is examined.

Analysis and finite element error estimates for the velocity tracking problem for Stokes flows via a penalized formulation

Konstantinos Chrysafinos (2010)

ESAIM: Control, Optimisation and Calculus of Variations

A distributed optimal control problem for evolutionary Stokes flows is studied via a pseudocompressibility formulation. Several results concerning the analysis of the velocity tracking problem are presented. Semidiscrete finite element error estimates for the corresponding optimality system are derived based on estimates for the penalized Stokes problem and the BRR (Brezzi-Rappaz-Raviart) theory. Finally, the convergence of the solutions of the penalized optimality systems as ε → 0 is examined. ...

Currently displaying 81 – 100 of 481