Chebyshev pseudospectral-hybrid finite element method for two-dimensional vorticity equation
We present an efficient numerical method for solving viscous compressible fluid flows. The basic idea is to combine finite volume and finite element methods in an appropriate way. Thus nonlinear convective terms are discretized by the finite volume method over a finite volume mesh dual to a triangular grid. Diffusion terms are discretized by the conforming piecewise linear finite element method. In the paper we study theoretical properties of this scheme for the scalar nonlinear convection-diffusion...
Partant du principe de conservation de la masse et du principe fondamental de la dynamique, on retrouve l'équation d'Euler nous permettant de décrire les modèles asymptotiques de propagation d'ondes dans des eaux peu profondes en dimension 1. Pour décrire la propagation des ondes en dimension 2, Kadomtsev et Petviashvili [ 15 (1970) 539] utilisent une perturbation linéaire de l'équation de KdV. Mais cela ne précise pas si les équations ainsi obtenues dérivent de l'équation d'Euler, c'est ce que...
We compare dewetting characteristics of a thin nonwetting solid film in the absence of stress, for two models of a wetting potential: the exponential and the algebraic. The exponential model is a one-parameter (r) model, and the algebraic model is a two-parameter (r, m) model, where r is the ratio of the characteristic wetting length to the height of the unperturbed film, and m is the exponent of h (film height) in a smooth function that interpolates the system's surface energy above and below...
We give a theorem on error estimates of approximate solutions for explicit and implicit difference functional equations with unknown functions of several variables. We apply this general result to investigate the stability of difference methods for quasilinear functional differential equations with initial boundary condition of Dirichlet type. We consider first order partial functional differential equations and parabolic functional differential problems. We compare the properties of explicit...
Initial-boundary value problems of Dirichlet type for parabolic functional differential equations are considered. Explicit difference schemes of Euler type and implicit difference methods are investigated. The following theoretical aspects of the methods are presented. Sufficient conditions for the convergence of approximate solutions are given and comparisons of the methods are presented. It is proved that the assumptions on the regularity of the given functions are the same for both methods. It...
In this work we describe two schemes for solving level set equation in 3D with a method based on finite volumes. These schemes use the so-called dual volumes as in [Coudiére, Y., Hubert, F.: A 3D discrete duality finite volume method for nonlinear elliptic equations Algoritmy 2009 (2009), 51–60.], [Hermeline, F.: A finite volume method for approximating 3D diffusion operators on general meshes Journal of Computational Physics 228, 16 (2009), 5763–5786.], where they are used for the nonlinear elliptic...
The modelling and the numerical resolution of the electrical charging of a spacecraft in interaction with the Earth magnetosphere is considered. It involves the Vlasov-Poisson system, endowed with non standard boundary conditions. We discuss the pros and cons of several numerical methods for solving this system, using as benchmark a simple 1D model which exhibits the main difficulties of the original models.
This paper concerns numerical methods for two-phase flows. The governing equations are the compressible 2-velocity, 2-pressure flow model. Pressure and velocity relaxation are included as source terms. Results obtained by a Godunov-type central scheme and a Roe-type upwind scheme are presented. Issues of preservation of pressure equilibrium, and positivity of the partial densities are addressed.
This paper concerns numerical methods for two-phase flows. The governing equations are the compressible 2-velocity, 2-pressure flow model. Pressure and velocity relaxation are included as source terms. Results obtained by a Godunov-type central scheme and a Roe-type upwind scheme are presented. Issues of preservation of pressure equilibrium, and positivity of the partial densities are addressed.
We consider a parabolic 2D Free Boundary Problem, with jump conditions at the interface. Its planar travelling-wave solutions are orbitally stable provided the bifurcation parameter does not exceed a critical value . The latter is the limit of a decreasing sequence of bifurcation points. The paper deals with the study of the 2D bifurcated branches from the planar branch, for small k. Our technique is based on the elimination of the unknown front, turning the problem into a fully nonlinear...
Development of engineering structures and technologies frequently works with advanced materials, whose properties, because of their complicated microstructure, cannot be predicted from experience, unlike traditional materials. The quality of computational modelling of relevant physical processes, based mostly on the principles of classical thermomechanics, is conditioned by the reliability of constitutive relations, coming from simplified experiments. The paper demonstrates some possibilities of...
European directives and related national technical standards force the substantial reduction of energy consumption of all types of buildings. This can be done thanks to the massive insulation and the improvement of quality of building enclosures, using the simple evaluation assuming the one-dimensional stationary heat conduction. However, recent applications of advanced materials, structures and technologies force the proper physical, mathematical and computational analysis coming from the thermodynamic...
We deal with numerical computation of the nonlinear partial differential equations (PDEs) of Black–Scholes type which incorporate the effect of transaction costs. Our proposed technique surmounts the difficulty of infinite domains and unbounded values of the solutions. Numerical implementation shows the validity of our scheme.