Displaying 421 – 440 of 1396

Showing per page

Convergence of the finite element method applied to an anisotropic phase-field model

Erik Burman, Daniel Kessler, Jacques Rappaz (2004)

Annales mathématiques Blaise Pascal

We formulate a finite element method for the computation of solutions to an anisotropic phase-field model for a binary alloy. Convergence is proved in the H 1 -norm. The convergence result holds for anisotropy below a certain threshold value. We present some numerical experiments verifying the theoretical results. For anisotropy below the threshold value we observe optimal order convergence, whereas in the case where the anisotropy is strong the numerical solution to the phase-field equation does not...

Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems

Béla J. Szekeres, Ferenc Izsák (2017)

Applications of Mathematics

Numerical solution of fractional order diffusion problems with homogeneous Dirichlet boundary conditions is investigated on a square domain. An appropriate extension is applied to have a well-posed problem on 2 and the solution on the square is regarded as a localization. For the numerical approximation a finite difference method is applied combined with the matrix transformation method. Here the discrete fractional Laplacian is approximated with a matrix power instead of computing the complicated...

Convergence Rates of the POD–Greedy Method

Bernard Haasdonk (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Iterative approximation algorithms are successfully applied in parametric approximation tasks. In particular, reduced basis methods make use of the so-called Greedy algorithm for approximating solution sets of parametrized partial differential equations. Recently, a priori convergence rate statements for this algorithm have been given (Buffa et al. 2009, Binev et al. 2010). The goal of the current study is the extension to time-dependent problems, which are typically approximated using the POD–Greedy...

Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition

Eliane Bécache, Jeronimo Rodríguez, Chrysoula Tsogka (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The problem of modeling acoustic waves scattered by an object with Neumann boundary condition is considered. The boundary condition is taken into account by means of the fictitious domain method, yielding a first order in time mixed variational formulation for the problem. The resulting system is discretized with two families of mixed finite elements that are compatible with mass lumping. We present numerical results illustrating that the Neumann boundary condition on the object is not always correctly...

Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition

Eliane Bécache, Jeronimo Rodríguez, Chrysoula Tsogka (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

The problem of modeling acoustic waves scattered by an object with Neumann boundary condition is considered. The boundary condition is taken into account by means of the fictitious domain method, yielding a first order in time mixed variational formulation for the problem. The resulting system is discretized with two families of mixed finite elements that are compatible with mass lumping. We present numerical results illustrating that the Neumann boundary condition on the object is not always...

Convergent algorithms suitable for the solution of the semiconductor device equations

Miroslav Pospíšek (1995)

Applications of Mathematics

In this paper, two algorithms are proposed to solve systems of algebraic equations generated by a discretization procedure of the weak formulation of boundary value problems for systems of nonlinear elliptic equations. The first algorithm, Newton-CG-MG, is suitable for systems with gradient mappings, while the second, Newton-CE-MG, can be applied to more general systems. Convergence theorems are proved and application to the semiconductor device modelling is described.

Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system

Andreas Prohl, Markus Schmuck (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose and analyse two convergent fully discrete schemes to solve the incompressible Navier-Stokes-Nernst-Planck-Poisson system. The first scheme converges to weak solutions satisfying an energy and an entropy dissipation law. The second scheme uses Chorin's projection method to obtain an efficient approximation that converges to strong solutions at optimal rates.

Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system

Andreas Prohl (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

The incompressible MHD equations couple Navier-Stokes equations with Maxwell's equations to describe the flow of a viscous, incompressible, and electrically conducting fluid in a Lipschitz domain Ω 3 . We verify convergence of iterates of different coupling and decoupling fully discrete schemes towards weak solutions for vanishing discretization parameters. Optimal first order of convergence is shown in the presence of strong solutions for a splitting scheme which decouples the computation of velocity...

Convergent semidiscretization of a nonlinear fourth order parabolic system

Ansgar Jüngel, René Pinnau (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.

Convergent semidiscretization of a nonlinear fourth order parabolic system

Ansgar Jüngel, René Pinnau (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.

Counting number of cells and cell segmentation using advection-diffusion equations

Peter Frolkovič, Karol Mikula, Nadine Peyriéras, Alex Sarti (2007)

Kybernetika

We develop a method for counting number of cells and extraction of approximate cell centers in 2D and 3D images of early stages of the zebra-fish embryogenesis. The approximate cell centers give us the starting points for the subjective surface based cell segmentation. We move in the inner normal direction all level sets of nuclei and membranes images by a constant speed with slight regularization of this flow by the (mean) curvature. Such multi- scale evolutionary process is represented by a geometrical...

Coupled heat transport and Darcian water flow in freezing soils

Krupička, Lukáš, Štefan, Radek, Beneš, Michal (2013)

Programs and Algorithms of Numerical Mathematics

The model of coupled heat transport and Darcian water flow in unsaturated soils and in conditions of freezing and thawing is analyzed. In this contribution, we present results concerning the existence of the numerical solution. Numerical scheme is based on semi-implicit discretization in time. This work illustrates its performance for a problem of freezing processes in vertical soil columns.

Curve reconstruction from a set of measured points

Hlavová, Marta (2021)

Programs and Algorithms of Numerical Mathematics

In this article, a method of cubic spline curve fitting to a set of points passing at a prescribed distance from input points obtained by measurement on a coordinate measuring machine is described. When reconstructing the shape of measured object from the points obtained by real measurements, it is always necessary to consider measurement uncertainty (tenths to tens of micrometres). This uncertainty is not zero, therefore interpolation methods, where the resulting curve passes through the given...

Curved triangular finite C m -elements

Alexander Ženíšek (1978)

Aplikace matematiky

Curved triangular C m -elements which can be pieced together with the generalized Bell’s C m -elements are constructed. They are applied to solving the Dirichlet problem of an elliptic equation of the order 2 ( m + 1 ) in a domain with a smooth boundary by the finite element method. The effect of numerical integration is studied, sufficient conditions for the existence and uniqueness of the approximate solution are presented and the rate of convergence is estimated. The rate of convergence is the same as in the...

Currently displaying 421 – 440 of 1396