There are very few reference solutions in the literature on non-Boussinesq natural convection flows. We propose here a test case problem which extends the well-known De Vahl Davis differentially heated square cavity problem to the case of large temperature differences for which the Boussinesq approximation is no longer valid. The paper is split in two parts: in this first part, we propose as yet unpublished reference solutions for cases characterized by a non-dimensional temperature difference of...
In the second part of the paper, we compare the solutions produced in the framework of the conference “Mathematical and numerical aspects of low Mach number flows” organized by INRIA and MAB in Porquerolles, June 2004, to the reference solutions described in Part 1. We make some recommendations on how to produce good quality solutions, and list a number of pitfalls to be avoided.
In the second part of the paper, we compare the solutions produced
in the framework of the conference “Mathematical and numerical
aspects of low Mach number flows” organized by INRIA and MAB in
Porquerolles, June 2004, to the reference solutions described in
Part 1. We make some recommendations on how to produce good
quality solutions, and list a number of pitfalls to be avoided.
There are very few reference solutions in the literature on
non-Boussinesq natural convection flows. We propose here a test
case problem which extends the well-known De Vahl Davis
differentially heated square cavity problem to the case of large
temperature differences for which the Boussinesq approximation is
no longer valid. The paper is split in two parts: in this first
part, we propose as yet unpublished reference solutions for cases
characterized by a non-dimensional temperature difference...
Over the past decade or so, there have been a large number of modelling approaches aimed
at elucidating the most important mechanisms affecting the formation of new capillaries
from parent blood vessels — a process known as angiogenesis. Most studies have focussed
upon the way in which capillary sprouts are initiated and migrate in response to
diffusible chemical stimuli supplied by hypoxic stromal cells and leukocytes in the
contexts of solid tumour...
Bacillus subtilis swarms rapidly over the surface of a synthetic medium
creating remarkable hyperbranched dendritic communities. Models to reproduce such effects
have been proposed under the form of parabolic Partial Differential Equations representing
the dynamics of the active cells (both motile and multiplying), the passive cells
(non-motile and non-growing) and nutrient concentration. We test the numerical behavior of
such models and compare...
For scalar conservation laws in one space dimension with a flux function discontinuous in space, there exist infinitely many classes of solutions which are L1 contractive. Each class is characterized by a connection (A,B) which determines the interface entropy. For solutions corresponding to a connection (A,B), there exists convergent numerical schemes based on Godunov or Engquist−Osher schemes. The natural question is how to obtain schemes, corresponding to computationally less expensive monotone...
This paper develops a framework to include Dirichlet boundary conditions on a subset of the boundary which depends on time. In this model, the boundary conditions are weakly enforced with the help of a Lagrange multiplier method. In order to avoid that the ansatz space of the Lagrange multiplier depends on time, a bi-Lipschitz transformation, which maps a fixed interval onto the Dirichlet boundary, is introduced. An inf-sup condition as well as existence results are presented for a class of second...
We build corotational symmetric solutions to the harmonic map flow from the unit disc into the unit sphere which have constant degree. First, we prove the existence of such solutions, using a time semi-discrete scheme based on the idea that the harmonic map flow is the -gradient of the relaxed Dirichlet energy. We prove a partial uniqueness result concerning these solutions. Then, we compute numerically these solutions by a moving-mesh method which allows us to deal with the singularity at the...
We build corotational symmetric solutions to the harmonic map flow from the unit disc into the unit sphere which have constant degree. First, we prove the existence of such solutions, using a time semi-discrete scheme based on the idea that the harmonic map flow is the L2-gradient of the relaxed Dirichlet energy. We prove a partial uniqueness result concerning these solutions. Then, we compute numerically these solutions by a moving-mesh method which allows us to deal with the singularity at the...