Remarks on a 2-D nonlinear backward heat problem using a truncated Fourier series method.
Asymptotic error expansions in the sense of -norm for the Raviart-Thomas mixed finite element approximation by the lowest-order rectangular element associated with a class of parabolic integro-differential equations on a rectangular domain are derived, such that the Richardson extrapolation of two different schemes and an interpolation defect correction can be applied to increase the accuracy of the approximations for both the vector field and the scalar field by the aid of an interpolation postprocessing...
In this work we derive a posteriori error estimates based on equations residuals for the heat equation with discontinuous diffusivity coefficients. The estimates are based on a fully discrete scheme based on conforming finite elements in each time slab and on the A-stable -scheme with . Following remarks of [Picasso, Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237; Verfürth, Calcolo 40 (2003) 195–212] it is easy to identify a time-discretization error-estimator and a space-discretization...
In this work we derive a posteriori error estimates based on equations residuals for the heat equation with discontinuous diffusivity coefficients. The estimates are based on a fully discrete scheme based on conforming finite elements in each time slab and on the A-stable θ-scheme with 1/2 ≤ θ ≤ 1. Following remarks of [Picasso, Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237; Verfürth, Calcolo40 (2003) 195–212] it is easy to identify a time-discretization error-estimator and a space-discretization...
Singularly perturbed problems often yield solutions with strong directional features, e.g. with boundary layers. Such anisotropic solutions lend themselves to adapted, anisotropic discretizations. The quality of the corresponding numerical solution is a key issue in any computational simulation. To this end we present a new robust error estimator for a singularly perturbed reaction–diffusion problem. In contrast to conventional estimators, our proposal is suitable for anisotropic finite element...
Singularly perturbed problems often yield solutions with strong directional features, e.g. with boundary layers. Such anisotropic solutions lend themselves to adapted, anisotropic discretizations. The quality of the corresponding numerical solution is a key issue in any computational simulation. To this end we present a new robust error estimator for a singularly perturbed reaction-diffusion problem. In contrast to conventional estimators, our proposal is suitable for anisotropic finite element...
The fully coupled description of blood flow and mass transport in blood vessels requires extremely robust numerical methods. In order to handle the heterogeneous coupling between blood flow and plasma filtration, addressed by means of Navier-Stokes and Darcy's equations, we need to develop a numerical scheme capable to deal with extremely variable parameters, such as the blood viscosity and Darcy's permeability of the arterial walls. In this paper, we describe a finite element method for...
The fully coupled description of blood flow and mass transport in blood vessels requires extremely robust numerical methods. In order to handle the heterogeneous coupling between blood flow and plasma filtration, addressed by means of Navier-Stokes and Darcy's equations, we need to develop a numerical scheme capable to deal with extremely variable parameters, such as the blood viscosity and Darcy's permeability of the arterial walls. In this paper, we describe a finite element method for...
The flow trough the Strait of Gibraltar could be analyzed as a problem of two-layer hydraulic exchange between the Atlantic ocean and the Mediterranean sea. The shallow water equations in both layers coupled together are an important tool to simulate this phenomenon. In this paper we perform an upwind schemes for hyperbolic equations based on the Roe approximate Riemann solver, to study the resulting model. The main goal assigned was to predict the location of the interface between the two layers....
We present a mathematical description of wetting and drying stone pores, where the resulting mathematical model contains hysteresis operators. We describe these hysteresis operators and present a numerical solution for a simplified problem.