The finite element method with nodes moving along the characteristics for convection-diffusion equations.
In the present work, the symmetrized sequential-parallel decomposition method with the fourth order accuracy for the solution of Cauchy abstract problem with an operator under a split form is presented. The fourth order accuracy is reached by introducing a complex coefficient with the positive real part. For the considered scheme, the explicit a priori estimate is obtained.
In the present work, the symmetrized sequential-parallel decomposition method with the fourth order accuracy for the solution of Cauchy abstract problem with an operator under a split form is presented. The fourth order accuracy is reached by introducing a complex coefficient with the positive real part. For the considered scheme, the explicit a priori estimate is obtained.
We demonstrate some a priori estimates of a scheme using stabilization and hybrid interfaces applying to partial differential equations describing miscible displacement in porous media. This system is made of two coupled equations: an anisotropic diffusion equation on the pressure and a convection-diffusion-dispersion equation on the concentration of invading fluid. The anisotropic diffusion operators in both equations require special care while discretizing by a finite volume method SUSHI. Later,...
We study the superconvergence of the finite volume method for a nonlinear elliptic problem using linear trial functions. Under the condition of -uniform meshes, we first establish a superclose weak estimate for the bilinear form of the finite volume method. Then, we prove that on the mesh point set , the gradient approximation possesses the superconvergence: , where denotes the average gradient on elements containing vertex . Furthermore, by using the interpolation post-processing technique,...
A reference triangular quadratic Lagrange finite element consists of a right triangle with unit legs , , a local space of quadratic polynomials on and of parameters relating the values in the vertices and midpoints of sides of to every function from . Any isoparametric triangular quadratic Lagrange finite element is determined by an invertible isoparametric mapping . We explicitly describe such invertible isoparametric mappings for which the images , of the segments , are segments,...
We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem. We...
We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem....