The search session has expired. Please query the service again.
Displaying 721 –
740 of
1415
A method of characterizing all eigenvalues of a preconditioned discretized scalar diffusion operator with Dirichlet boundary conditions has been recently introduced in Gergelits, Mardal, Nielsen, and Strakoš (2019). Motivated by this paper, we offer a slightly different approach that extends the previous results in some directions. Namely, we provide bounds on all increasingly ordered eigenvalues of a general diffusion or elasticity operator with tensor data, discretized with the conforming finite...
In this work, we analyze hierarchic -finite element discretizations of the full, three-dimensional plate problem. Based on two-scale asymptotic expansion of the three-dimensional solution, we give specific mesh design principles for the -FEM which allow to resolve the three-dimensional boundary layer profiles at robust, exponential rate. We prove that, as the plate half-thickness tends to zero, the -discretization is consistent with the three-dimensional solution to any power of in the energy...
We propose and analyze a domain decomposition method on non-matching grids for partial differential equations with non-negative characteristic form. No weak or strong continuity of the finite element functions, their normal derivatives, or linear combinations of the two is imposed across the boundaries of the subdomains. Instead, we employ suitable bilinear forms defined on the common interfaces, typical of discontinuous Galerkin approximations. We prove an error bound which is optimal with respect...
A brief survey is given to show that harmonic averages enter in a natural way in the numerical solution of various variable coefficient problems, such as in elliptic and transport equations, also of singular perturbation types. Local Green’s functions used as test functions in the Petrov-Galerkin finite element method combined with harmonic averages can be very efficient and are related to exact difference schemes.
Hermite polynomial interpolation is investigated.
Some approximation results are obtained. As an example, the Burgers
equation on the whole line is considered. The stability and the
convergence of proposed Hermite pseudospectral scheme are proved
strictly. Numerical results are presented.
We study the approximation properties of some finite element subspaces of H(div;Ω) and H(curl;Ω) defined on hexahedral meshes in three dimensions. This work extends results previously obtained for quadrilateral H(div;Ω) finite elements and for quadrilateral scalar finite element spaces. The finite element spaces we consider are constructed starting from a given finite dimensional space of vector fields on the reference cube, which is then transformed to a space of vector fields on a hexahedron using...
We study the approximation properties of some finite element subspaces of
H(div;Ω) and H(curl;Ω) defined on hexahedral meshes in three dimensions. This
work extends results previously obtained for quadrilateral H(div;Ω) finite
elements and for quadrilateral scalar finite element spaces. The finite
element spaces we consider are constructed starting from a given finite
dimensional space of vector fields on the reference cube, which is then
transformed to a space of vector fields on a hexahedron...
Low order edge elements are widely used for electromagnetic field problems. Higher order edge approximations are receiving increasing interest but their definition become rather complex.
In this paper we propose a simple definition for Whitney edge elements of polynomial degree higher than one.
We give a geometrical localization of all degrees of freedom over particular edges and provide
a basis for these elements on simplicial meshes.
As for Whitney edge elements of degree one, the basis is...
We propose transmission conditions of order 1, 2 and 3
approximating the shielding behaviour of thin conducting curved
sheets for the magneto-quasistatic eddy current model in 2D. This
model reduction applies to sheets whose thicknesses ε are at
the order of the skin depth or essentially smaller. The sheet has
itself not to be resolved, only its midline is represented by an
interface. The computation is directly in one step with almost no
additional cost. We prove the well-posedness w.r.t. to...
We propose transmission conditions of order 1, 2 and 3
approximating the shielding behaviour of thin conducting curved
sheets for the magneto-quasistatic eddy current model in 2D. This
model reduction applies to sheets whose thicknesses ε are at
the order of the skin depth or essentially smaller. The sheet has
itself not to be resolved, only its midline is represented by an
interface. The computation is directly in one step with almost no
additional cost. We prove the well-posedness w.r.t. to...
A nonlinear elliptic partial differential equation with homogeneous Dirichlet boundary conditions is examined. The problem describes for instance a stationary heat conduction in nonlinear inhomogeneous and anisotropic media. For finite elements of degree we prove the optimal rates of convergence in the -norm and in the -norm provided the true solution is sufficiently smooth. Considerations are restricted to domains with polyhedral boundaries. Numerical integration is not taken into account....
This paper deals with the numerical study of a nonlinear, strongly anisotropic heat equation. The use of standard schemes in this situation leads to poor results, due to the high anisotropy. An Asymptotic-Preserving method is introduced in this paper, which is second-order accurate in both, temporal and spacial variables. The discretization in time is done using an L-stable Runge−Kutta scheme. The convergence of the method is shown to be independent of the anisotropy parameter , and this for fixed...
We propose and examine a simple averaging formula for the gradient of linear finite elements in whose interpolation order in the -norm is for and nonuniform triangulations. For elliptic problems in we derive an interior superconvergence for the averaged gradient over quasiuniform triangulations. A numerical example is presented.
In this work, we analyze hierarchic hp-finite element discretizations of the full, three-dimensional
plate problem. Based on two-scale asymptotic expansion of the three-dimensional solution, we give
specific mesh design principles for the hp-FEM which allow to resolve the three-dimensional boundary
layer profiles at robust, exponential rate.
We prove that, as the plate half-thickness ε tends to zero, the hp-discretization is consistent
with the three-dimensional solution to any power of ε in...
We propose and analyze a domain decomposition method on non-matching grids
for partial differential equations with non-negative
characteristic form. No weak or strong continuity of the finite
element functions, their normal derivatives, or linear
combinations of the two is imposed across the boundaries of the subdomains.
Instead, we employ suitable bilinear forms defined on the common
interfaces, typical of discontinuous Galerkin
approximations.
We prove an error bound which is optimal with respect...
In this paper a strategy is investigated for the spatial coupling of an asymptotic
preserving scheme with the asymptotic limit model, associated to a singularly perturbed,
highly anisotropic, elliptic problem. This coupling strategy appears to be very
advantageous as compared with the numerical discretization of the initial singular
perturbation model or the purely asymptotic preserving scheme introduced in previous works [3, 5]. The model problem addressed...
We present a hybrid OpenMP/MPI parallelization of the finite element method that is suitable to make use of modern high performance computers. These are usually built from a large bulk of multi-core systems connected by a fast network. Our parallelization method is based firstly on domain decomposition to divide the large problem into small chunks. Each of them is then solved on a multi-core system using parallel assembling, solution and error estimation. To make domain decomposition for both, the...
In the framework of an explicitly correlated formulation of the electronic Schrödinger
equation known as the transcorrelated method, this work addresses some fundamental issues
concerning the feasibility of eigenfunction approximation by hyperbolic wavelet bases.
Focusing on the two-electron case, the integrability of mixed weak derivatives of
eigenfunctions of the modified problem and the improvement compared to the standard
formulation are discussed....
In the framework of an explicitly correlated formulation of the electronic Schrödinger equation known as the transcorrelated method, this work addresses some fundamental issues concerning the feasibility of eigenfunction approximation by hyperbolic wavelet bases. Focusing on the two-electron case, the integrability of mixed weak derivatives of eigenfunctions of the modified problem and the improvement compared to the standard formulation are discussed. Elements of a discretization of the eigenvalue...
Currently displaying 721 –
740 of
1415