Displaying 881 – 900 of 1411

Showing per page

Numerical analysis of a frictionless viscoelastic piezoelectric contact problem

Mikael Barboteu, Jose Ramon Fernández, Youssef Ouafik (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we consider the quasistatic frictionless contact problem between a viscoelastic piezoelectric body and a deformable obstacle. The linear electro-viscoelastic constitutive law is employed to model the piezoelectric material and the normal compliance condition is used to model the contact. The variational formulation is derived in a form of a coupled system for the displacement and electric potential fields. An existence and uniqueness result is recalled. Then, a fully discrete scheme...

Numerical analysis of a relaxed variational model of hysteresis in two-phase solids

Carsten Carstensen, Petr Plecháč (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper presents the numerical analysis for a variational formulation of rate-independent phase transformations in elastic solids due to Mielke et al. The new model itself suggests an implicit time-discretization which is combined with the finite element method in space. A priori error estimates are established for the quasioptimal spatial approximation of the stress field within one time-step. A posteriori error estimates motivate an adaptive mesh-refining algorithm for efficient discretization....

Numerical Analysis of a Relaxed Variational Model of Hysteresis in Two-Phase Solids

Carsten Carstensen, Petr Plecháč (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper presents the numerical analysis for a variational formulation of rate-independent phase transformations in elastic solids due to Mielke et al. The new model itself suggests an implicit time-discretization which is combined with the finite element method in space. A priori error estimates are established for the quasioptimal spatial approximation of the stress field within one time-step. A posteriori error estimates motivate an adaptive mesh-refining algorithm for efficient...

Numerical analysis of a Stokes interface problem based on formulation using the characteristic function

Yoshiki Sugitani (2017)

Applications of Mathematics

Numerical analysis of a model Stokes interface problem with the homogeneous Dirichlet boundary condition is considered. The interface condition is interpreted as an additional singular force field to the Stokes equations using the characteristic function. The finite element method is applied after introducing a regularization of the singular source term. Consequently, the error is divided into the regularization and discretization parts which are studied separately. As a result, error estimates...

Numerical analysis of a transmission problem with Signorini contact using mixed-FEM and BEM

Gabriel N. Gatica, Matthias Maischak, Ernst P. Stephan (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the dual formulation of the interface problem consisting of a linear partial differential equation with variable coefficients in some bounded Lipschitz domain Ω in n (n ≥ 2) and the Laplace equation with some radiation condition in the unbounded exterior domain Ωc:= n Ω ¯ . The two problems are coupled by transmission and Signorini contact conditions on the interface Γ = ∂Ω. The exterior part of the interface problem is rewritten using a Neumann to Dirichlet mapping (NtD)...

Numerical analysis of a transmission problem with Signorini contact using mixed-FEM and BEM*

Gabriel N. Gatica, Matthias Maischak, Ernst P. Stephan (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the dual formulation of the interface problem consisting of a linear partial differential equation with variable coefficients in some bounded Lipschitz domain Ω in n (n ≥ 2) and the Laplace equation with some radiation condition in the unbounded exterior domain Ωc := n Ω ¯ . The two problems are coupled by transmission and Signorini contact conditions on the interface Γ = ∂Ω. The exterior part of the interface problem is rewritten using a Neumann to Dirichlet mapping...

Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations

Eduardo Casas, Fredi Tröltzsch (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we carry out the numerical analysis of a distributed optimal control problem governed by a quasilinear elliptic equation of non-monotone type. The goal is to prove the strong convergence of the discretization of the problem by finite elements. The main issue is to get error estimates for the discretization of the state equation. One of the difficulties in this analysis is that, in spite of the partial differential equation has a unique solution for any given control, the uniqueness...

Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations*

Eduardo Casas, Fredi Tröltzsch (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we carry out the numerical analysis of a distributed optimal control problem governed by a quasilinear elliptic equation of non-monotone type. The goal is to prove the strong convergence of the discretization of the problem by finite elements. The main issue is to get error estimates for the discretization of the state equation. One of the difficulties in this analysis is that, in spite of the partial differential equation has a unique solution for any given control, the uniqueness...

Numerical analysis of the general biharmonic problem by the finite element method

Jiří Hřebíček (1982)

Aplikace matematiky

The present paper deals with solving the general biharmonic problem by the finite element method using curved triangular finit C 1 -elements introduced by Ženíšek. The effect of numerical integration is analysed in the case of mixed boundary conditions and sufficient conditions for the uniform V O h -ellipticity are found.

Numerical analysis of the meshless element-free Galerkin method for hyperbolic initial-boundary value problems

Yaozong Tang, Xiaolin Li (2017)

Applications of Mathematics

The meshless element-free Galerkin method is developed for numerical analysis of hyperbolic initial-boundary value problems. In this method, only scattered nodes are required in the domain. Computational formulae of the method are analyzed in detail. Error estimates and convergence are also derived theoretically and verified numerically. Numerical examples validate the performance and efficiency of the method.

Numerical analysis of the quasistatic thermoviscoelastic thermistor problem

José R. Fernández (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, the quasistatic thermoviscoelastic thermistor problem is considered. The thermistor model describes the combination of the effects due to the heat, electrical current conduction and Joule's heat generation. The variational formulation leads to a coupled system of nonlinear variational equations for which the existence of a weak solution is recalled. Then, a fully discrete algorithm is introduced based on the finite element method to approximate the spatial variable and an Euler scheme...

Numerical approximation of dynamic deformations of a thermoviscoelastic rod against an elastic obstacle

Maria I. M. Copetti (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we consider a hyperbolic-parabolic problem that models the longitudinal deformations of a thermoviscoelastic rod supported unilaterally by an elastic obstacle. The existence and uniqueness of a strong solution is shown. A finite element approximation is proposed and its convergence is proved. Numerical experiments are reported.

Numerical approximation of dynamic deformations of a thermoviscoelastic rod against an elastic obstacle

Maria I.M. Copetti (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we consider a hyperbolic-parabolic problem that models the longitudinal deformations of a thermoviscoelastic rod supported unilaterally by an elastic obstacle. The existence and uniqueness of a strong solution is shown. A finite element approximation is proposed and its convergence is proved. Numerical experiments are reported.

Currently displaying 881 – 900 of 1411