Displaying 381 – 400 of 3487

Showing per page

An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit

Didier Bresch, Marguerite Gisclon, Chi-Kun Lin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The purpose of this work is to study an example of low Mach (Froude) number limit of compressible flows when the initial density (height) is almost equal to a function depending on x. This allows us to connect the viscous shallow water equation and the viscous lake equations. More precisely, we study this asymptotic with well prepared data in a periodic domain looking at the influence of the variability of the depth. The result concerns weak solutions. In a second part, we discuss...

An existence proof for the stationary compressible Stokes problem

A. Fettah, T. Gallouët, H. Lakehal (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

In this paper, we prove the existence of a solution for a quite general stationary compressible Stokes problem including, in particular, gravity effects. The Equation Of State gives the pressure as an increasing superlinear function of the density. This existence result is obtained by passing to the limit on the solution of a viscous approximation of the continuity equation.

An explicit right inverse of the divergence operator which is continuous in weighted norms

Ricardo G. Durán, Maria Amelia Muschietti (2001)

Studia Mathematica

The existence of a continuous right inverse of the divergence operator in W 1 , p ( Ω ) , 1 < p < ∞, is a well known result which is basic in the analysis of the Stokes equations. The object of this paper is to show that the continuity also holds for some weighted norms. Our results are valid for Ω ⊂ ℝⁿ a bounded domain which is star-shaped with respect to a ball B ⊂ Ω. The continuity results are obtained by using an explicit solution of the divergence equation and the classical theory of singular integrals...

An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations

Éric Boillat (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we consider the initial value problem which is obtained after a space discretization (with space step h ) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size h chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between h and the time step size...

An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations

Éric Boillat (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we consider the initial value problem which is obtained after a space discretization (with space step h) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size h chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between h and the time...

An improved regularity criteria for the MHD system based on two components of the solution

Zujin Zhang, Yali Zhang (2021)

Applications of Mathematics

As observed by Yamazaki, the third component b 3 of the magnetic field can be estimated by the corresponding component u 3 of the velocity field in L λ ( 2 λ 6 )...

An iterative procedure to solve a coupled two-fluids turbulence model

Tomas Chacón Rebollo, Stéphane Del Pino, Driss Yakoubi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper introduces a scheme for the numerical approximation of a model for two turbulent flows with coupling at an interface. We consider the variational formulation of the coupled model, where the turbulent kinetic energy equation is formulated by transposition. We prove the convergence of the approximation to this formulation for 3D flows for large turbulent viscosities and smooth enough flows, whenever bounded in W1,p Sobolev norms for p large enough. Under the same assumptions, we...

An L q ( L ² ) -theory of the generalized Stokes resolvent system in infinite cylinders

Reinhard Farwig, Myong-Hwan Ri (2007)

Studia Mathematica

Estimates of the generalized Stokes resolvent system, i.e. with prescribed divergence, in an infinite cylinder Ω = Σ × ℝ with Σ n - 1 , a bounded domain of class C 1 , 1 , are obtained in the space L q ( ; L ² ( Σ ) ) , q ∈ (1,∞). As a preparation, spectral decompositions of vector-valued homogeneous Sobolev spaces are studied. The main theorem is proved using the techniques of Schauder decompositions, operator-valued multiplier functions and R-boundedness of operator families.

An object-oriented approach to the design of fluid mechanics software

Christophe Calvin, Olga Cueto, Philippe Emonot (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This article presents the guiding principles of the architecture of Trio_U, a new generation of software for thermohydraulic calculations. Trio_U is designed to serve as a thermohydraulic development platform. Its basic conception is object-oriented and it is written in C++. The article demonstrates how this type of design enables an open, modular software architecture.

An object-oriented approach to the design of fluid mechanics software

Christophe Calvin, Olga Cueto, Philippe Emonot (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This article presents the guiding principles of the architecture of Trio_U, a new generation of software for thermohydraulic calculations. Trio_U is designed to serve as a thermohydraulic development platform. Its basic conception is object-oriented and it is written in C++. The article demonstrates how this type of design enables an open, modular software architecture.

An unconditionally stable finite element-finite volume pressure correction scheme for the drift-flux model

Laura Gastaldo, Raphaèle Herbin, Jean-Claude Latché (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present in this paper a pressure correction scheme for the drift-flux model combining finite element and finite volume discretizations, which is shown to enjoy essential stability features of the continuous problem: the scheme is conservative, the unknowns are kept within their physical bounds and, in the homogeneous case (i.e. when the drift velocity vanishes), the discrete entropy of the system decreases; in addition, when using for the drift velocity a closure law which takes the form of...

Currently displaying 381 – 400 of 3487