Displaying 61 – 80 of 797

Showing per page

A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems

Josef Dalík (1991)

Applications of Mathematics

A general construction of test functions in the Petrov-Galerkin method is described. Using this construction; algorithms for an approximate solution of the Dirichlet problem for the differential equation - ϵ u n + p u ' + q u = f are presented and analyzed theoretically. The positive number ϵ is supposed to be much less than the discretization step and the values of p , q . An algorithm for the corresponding two-dimensional problem is also suggested and results of numerical tests are introduced.

A phase-field method applied to interface tracking for blood clot formation

Marek Čapek (2020)

Applications of Mathematics

The high shear rate thrombus formation was only recently recognized as another way of thrombosis. Models proposed in Weller (2008), (2010) take into account this type of thrombosis. This work uses the phase-field method to model these evolving interface problems. A loosely coupled iterative procedure is introduced to solve the coupled system of equations. Convergence behavior on two levels of refinement of perfusion chamber geometry and cylinder geometry is then studied. The perfusion chamber simulations...

A piecewise P2-nonconforming quadrilateral finite element

Imbunm Kim, Zhongxuan Luo, Zhaoliang Meng, Hyun NAM, Chunjae Park, Dongwoo Sheen (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a piecewise P2-nonconforming quadrilateral finite element. First, we decompose a convex quadrilateral into the union of four triangles divided by its diagonals. Then the finite element space is defined by the set of all piecewise P2-polynomials that are quadratic in each triangle and continuously differentiable on the quadrilateral. The degrees of freedom (DOFs) are defined by the eight values at the two Gauss points on each of the four edges plus the value at the intersection of the...

A positivity preserving central scheme for shallow water flows in channels with wet-dry states

Jorge Balbás, Gerardo Hernandez-Duenas (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a high-resolution, non-oscillatory semi-discrete central scheme for one-dimensional shallow-water flows along channels with non uniform cross sections of arbitrary shape and bottom topography. The proposed scheme extends existing central semi-discrete schemes for hyperbolic conservation laws and enjoys two properties crucial for the accurate simulation of shallow-water flows: it preserves the positivity of the water height, and it is well balanced, i.e., the source terms arising from...

A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems

Alexandre Ern, Sébastien Meunier (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We analyze Euler-Galerkin approximations (conforming finite elements in space and implicit Euler in time) to coupled PDE systems in which one dependent variable, say u , is governed by an elliptic equation and the other, say p , by a parabolic-like equation. The underlying application is the poroelasticity system within the quasi-static assumption. Different polynomial orders are used for the u - and p -components to obtain optimally convergent a priori bounds for all the terms in the error energy norm....

A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems

Alexandre Ern, Sébastien Meunier (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We analyze Euler-Galerkin approximations (conforming finite elements in space and implicit Euler in time) to coupled PDE systems in which one dependent variable, say u, is governed by an elliptic equation and the other, say p, by a parabolic-like equation. The underlying application is the poroelasticity system within the quasi-static assumption. Different polynomial orders are used for the u- and p-components to obtain optimally convergent a priori bounds for all the terms in the error energy...

A posteriori error analysis of the fully discretized time-dependent Stokes equations

Christine Bernardi, Rüdiger Verfürth (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The time-dependent Stokes equations in two- or three-dimensional bounded domains are discretized by the backward Euler scheme in time and finite elements in space. The error of this discretization is bounded globally from above and locally from below by the sum of two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization.

A posteriori error analysis of the fully discretized time-dependent Stokes equations

Christine Bernardi, Rüdiger Verfürth (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The time-dependent Stokes equations in two- or three-dimensional bounded domains are discretized by the backward Euler scheme in time and finite elements in space. The error of this discretization is bounded globally from above and locally from below by the sum of two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization.

A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations

Mario Ohlberger (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is devoted to the study of a posteriori error estimates for the scalar nonlinear convection-diffusion-reaction equation c t + · ( 𝐮 f ( c ) ) - · ( D c ) + λ c = 0 . The estimates for the error between the exact solution and an upwind finite volume approximation to the solution are derived in the L 1 -norm, independent of the diffusion parameter D . The resulting a posteriori error estimate is used to define an grid adaptive solution algorithm for the finite volume scheme. Finally numerical experiments underline the applicability...

A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations

Mario Ohlberger (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is devoted to the study of a posteriori error estimates for the scalar nonlinear convection-diffusion-reaction equation c t + · ( 𝐮 f ( c ) ) - · ( D c ) + λ c = 0 . The estimates for the error between the exact solution and an upwind finite volume approximation to the solution are derived in the L1-norm, independent of the diffusion parameter D. The resulting a posteriori error estimate is used to define an grid adaptive solution algorithm for the finite volume scheme. Finally numerical experiments underline the applicability...

A priori error analysis of a fully-mixed finite element method for a two-dimensional fluid-solid interaction problem

Carolina Domínguez, Gabriel N. Gatica, Salim Meddahi, Ricardo Oyarzúa (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce and analyze a fully-mixed finite element method for a fluid-solid interaction problem in 2D. The model consists of an elastic body which is subject to a given incident wave that travels in the fluid surrounding it. Actually, the fluid is supposed to occupy an annular region, and hence a Robin boundary condition imitating the behavior of the scattered field at infinity is imposed on its exterior boundary, which is located far from the obstacle. The media are governed by the elastodynamic...

A Q -scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shadow water system

Manuel Castro, Jorge Macías, Carlos Parés (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The goal of this paper is to construct a first-order upwind scheme for solving the system of partial differential equations governing the one-dimensional flow of two superposed immiscible layers of shallow water fluids. This is done by generalizing a numerical scheme presented by Bermúdez and Vázquez-Cendón [3, 26, 27] for solving one-layer shallow water equations, consisting in a Q -scheme with a suitable treatment of the source terms. The difficulty in the two layer system comes from the coupling...

A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system

Manuel Castro, Jorge Macías, Carlos Parés (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The goal of this paper is to construct a first-order upwind scheme for solving the system of partial differential equations governing the one-dimensional flow of two superposed immiscible layers of shallow water fluids. This is done by generalizing a numerical scheme presented by Bermúdez and Vázquez-Cendón [3, 6, 27] for solving one-layer shallow water equations, consisting in a Q-scheme with a suitable treatment of the source terms. The difficulty in the two layer system comes from the coupling...

A reduced basis element method for the steady Stokes problem

Alf Emil Løvgren, Yvon Maday, Einar M. Rønquist (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

The reduced basis element method is a new approach for approximating the solution of problems described by partial differential equations. The method takes its roots in domain decomposition methods and reduced basis discretizations. The basic idea is to first decompose the computational domain into a series of subdomains that are deformations of a few reference domains (or generic computational parts). Associated with each reference domain are precomputed solutions corresponding to the same...

Currently displaying 61 – 80 of 797