Displaying 241 – 260 of 357

Showing per page

On weak-strong uniqueness property for full compressible magnetohydrodynamics flows

Weiping Yan (2013)

Open Mathematics

This paper is devoted to the study of the weak-strong uniqueness property for full compressible magnetohydrodynamics flows. The governing equations for magnetohydrodynamic flows are expressed by the full Navier-Stokes system for compressible fluids enhanced by forces due to the presence of the magnetic field as well as the gravity and an additional equation which describes the evolution of the magnetic field. Using the relative entropy inequality, we prove that a weak solution coincides with the...

Optimal control of linearized compressible Navier–Stokes equations

Shirshendu Chowdhury, Mythily Ramaswamy (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We study an optimal boundary control problem for the two dimensional unsteady linearized compressible Navier–Stokes equations in a rectangle. The control acts through the Dirichlet boundary condition. We first establish the existence and uniqueness of the solution for the two-dimensional unsteady linearized compressible Navier–Stokes equations in a rectangle with inhomogeneous Dirichlet boundary data, not necessarily smooth. Then, we prove the existence and uniqueness of the optimal solution over...

Optimal control of stationary, low Mach number, highly nonisothermal, viscous flows

Max D. Gunzburger, O. Yu. Imanuvilov (2010)

ESAIM: Control, Optimisation and Calculus of Variations

An optimal control problem for a model for stationary, low Mach number, highly nonisothermal, viscous flows is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. The existence of solutions of a boundary value problem for the model equations is established as is the existence of solutions of the optimal control problem. Then, a derivation of an optimality system, i.e., a boundary value problem from...

Partial regularity of solution to generalized Navier-Stokes problem

Václav Mácha (2014)

Open Mathematics

In the presented work, we study the regularity of solutions to the generalized Navier-Stokes problem up to a C 2 boundary in dimensions two and three. The point of our generalization is an assumption that a deviatoric part of a stress tensor depends on a shear rate and on a pressure. We focus on estimates of the Hausdorff measure of a singular set which is defined as a complement of a set where a solution is Hölder continuous. We use so-called indirect approach to show partial regularity, for dimension...

Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries II

David Gérard-Varet, Daniel Han-Kwan, Frédéric Rousset (2014)

Journal de l’École polytechnique — Mathématiques

In this paper, we study the quasineutral limit of the isothermal Euler-Poisson equation for ions, in a domain with boundary. This is a follow-up to our previous work [5], devoted to no-penetration as well as subsonic outflow boundary conditions. We focus here on the case of supersonic outflow velocities. The structure of the boundary layers and the stabilization mechanism are different.

Regularity in kinetic formulations via averaging lemmas

Pierre-Emmanuel Jabin, Benoît Perthame (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We present a new class of averaging lemmas directly motivated by the question of regularity for different nonlinear equations or variational problems which admit a kinetic formulation. In particular they improve the known regularity for systems like γ = 3 in isentropic gas dynamics or in some variational problems arising in thin micromagnetic films. They also allow to obtain directly the best known regularizing effect in multidimensional scalar conservation laws. The new ingredient here is to use velocity...

Regularity in kinetic formulations via averaging lemmas

Pierre-Emmanuel Jabin, Benoît Perthame (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We present a new class of averaging lemmas directly motivated by the question of regularity for different nonlinear equations or variational problems which admit a kinetic formulation. In particular they improve the known regularity for systems like γ = 3 in isentropic gas dynamics or in some variational problems arising in thin micromagnetic films. They also allow to obtain directly the best known regularizing effect in multidimensional scalar conservation laws. The new ingredient here is to...

Relaxation models of phase transition flows

Philippe Helluy, Nicolas Seguin (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we propose a general framework for the construction of pressure law for phase transition. These equations of state are particularly suitable for a use in a relaxation finite volume scheme. The approach is based on a constrained convex optimization problem on the mixture entropy. It is valid for both miscible and immiscible mixtures. We also propose a rough pressure law for modelling a super-critical fluid.

Relaxation schemes for the multicomponent Euler system

Stéphane Dellacherie (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We show that it is possible to construct a class of entropic schemes for the multicomponent Euler system describing a gas or fluid homogeneous mixture at thermodynamic equilibrium by applying a relaxation technique. A first order Chapman–Enskog expansion shows that the relaxed system formally converges when the relaxation frequencies go to the infinity toward a multicomponent Navier–Stokes system with the classical Fick and Newton laws, with a thermal diffusion which can be assimilated to a Soret...

Relaxation schemes for the multicomponent Euler system

Stéphane Dellacherie (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We show that it is possible to construct a class of entropic schemes for the multicomponent Euler system describing a gas or fluid homogeneous mixture at thermodynamic equilibrium by applying a relaxation technique. A first order Chapman–Enskog expansion shows that the relaxed system formally converges when the relaxation frequencies go to the infinity toward a multicomponent Navier–Stokes system with the classical Fick and Newton laws, with a thermal diffusion which can be assimilated to a Soret...

Currently displaying 241 – 260 of 357