Displaying 21 – 40 of 2285

Showing per page

A Deformed Quon Algebra

Hery Randriamaro (2019)

Communications in Mathematics

The quon algebra is an approach to particle statistics in order to provide a theory in which the Pauli exclusion principle and Bose statistics are violated by a small amount. The quons are particles whose annihilation and creation operators obey the quon algebra which interpolates between fermions and bosons. In this paper we generalize these models by introducing a deformation of the quon algebra generated by a collection of operators a i , k , ( i , k ) * × [ m ] , on an infinite dimensional vector space satisfying the...

A gauge-field approach to 3- and 4-manifold invariants

Bogusław Broda (1997)

Banach Center Publications

An approach to construction of topological invariants of the Reshetikhin-Turaev-Witten type of 3- and 4-dimensional manifolds in the framework of SU(2) Chern-Simons gauge theory and its hidden (quantum) gauge symmetry is presented.

A generalization of the conservation integral

Volkmar Liebscher (1998)

Banach Center Publications

Starting from the scheme given by Hudson and Parthasarathy [7,11] we extend the conservation integral to the case where the underlying operator does not commute with the time observable. It turns out that there exist two extensions, a left and a right conservation integral. Moreover, Itô's formula demands for a third integral with two integrators. Only the left integral shows similar continuity properties to that derived in [11] used for extending the integral to more than simple integrands. In...

Currently displaying 21 – 40 of 2285