A continuity argument for a semilinear Skyrme model.
The quon algebra is an approach to particle statistics in order to provide a theory in which the Pauli exclusion principle and Bose statistics are violated by a small amount. The quons are particles whose annihilation and creation operators obey the quon algebra which interpolates between fermions and bosons. In this paper we generalize these models by introducing a deformation of the quon algebra generated by a collection of operators , , on an infinite dimensional vector space satisfying the...
An approach to construction of topological invariants of the Reshetikhin-Turaev-Witten type of 3- and 4-dimensional manifolds in the framework of SU(2) Chern-Simons gauge theory and its hidden (quantum) gauge symmetry is presented.
Starting from the scheme given by Hudson and Parthasarathy [7,11] we extend the conservation integral to the case where the underlying operator does not commute with the time observable. It turns out that there exist two extensions, a left and a right conservation integral. Moreover, Itô's formula demands for a third integral with two integrators. Only the left integral shows similar continuity properties to that derived in [11] used for extending the integral to more than simple integrands. In...