Absence of geometrical phases in the rotating stark effect
Motivated by the theory of superconductivity and more precisely by the problem of the onset of superconductivity in dimension two, many papers devoted to the analysis in a semi-classical regime of the lowest eigenvalue of the Schrödinger operator with magnetic field have appeared recently. Here we would like to mention the works by Bernoff-Sternberg, Lu-Pan, Del Pino-Felmer-Sternberg and Helffer-Morame and also Bauman-Phillips-Tang for the case of a disc. In the present paper we settle one important...
2000 Mathematics Subject Classification: 34L40, 65L10, 65Z05, 81Q20.This article is concerned with the analysis of the WKB expansion in a classically forbidden region for a one dimensional boundary value Schrodinger equation with a non smooth potential. The assumed regularity of the potential is the one coming from a non linear problem and seems to be the critical one for which a good exponential decay estimate can be proved for the first remainder term. The treatment of the boundary conditions brings...
The effective dynamics of interacting waves for coupled Schrödinger-Korteweg-de Vries equations over a slowly varying random bottom is rigorously studied. One motivation for studying such a system is better understanding the unidirectional motion of interacting surface and internal waves for a fluid system that is formed of two immiscible layers. It was shown recently by Craig-Guyenne-Sulem [1] that in the regime where the internal wave has a large...
The affine Birman-Wenzl-Murakami algebras can be defined algebraically, via generators and relations, or geometrically as algebras of tangles in the solid torus, modulo Kauffman skein relations. We prove that the two versions are isomorphic, and we show that these algebras are free over any ground ring, with a basis similar to a well known basis of the affine Hecke algebra.