Displaying 141 – 160 of 264

Showing per page

Positive energy quantization of linear dynamics

Jan Dereziński, Christian Gérard (2010)

Banach Center Publications

The abstract mathematical structure behind the positive energy quantization of linear classical systems is described. It is separated into three stages: the description of a classical system, the algebraic quantization and the Hilbert space quantization. Four kinds of systems are distinguished: neutral bosonic, neutral bosonic, charged bosonic and charged fermionic. The formalism that is described follows closely the usual constructions employed in quantum physics to introduce noninteracting quantum...

Properties of non-hermitian quantum field theories

Carl M. Bender (2003)

Annales de l’institut Fourier

In this paper I discuss quantum systems whose Hamiltonians are non-Hermitian but whose energy levels are all real and positive. Such theories are required to be symmetric under 𝒞 𝒫 𝒯 , but not symmetric under 𝒫 and 𝒯 separately. Recently, quantum mechanical systems having such properties have been investigated in detail. In this paper I extend the results to quantum field theories. Among the systems that I discuss are - φ 4 and i φ 3 theories. These theories all have unexpected and remarkable properties. I discuss...

Q-adapted quantum stochastic integrals and differentials in Fock scale

Viacheslav Belavkin, Matthew Brown (2011)

Banach Center Publications

In this paper we first introduce the Fock-Guichardet formalism for the quantum stochastic (QS) integration, then the four fundamental processes of the dynamics are introduced in the canonical basis as the operator-valued measures, on a space-time σ-field , of the QS integration. Then rigorous analysis of the QS integrals is carried out, and continuity of the QS derivative D is proved. Finally, Q-adapted dynamics is discussed, including Bosonic (Q = I), Fermionic (Q = -I), and monotone (Q = O) quantum...

Quantization and Morita equivalence for constant Dirac structures on tori

Xiang Tang, Alan Weinstein (2004)

Annales de l’institut Fourier

We define a C * -algebraic quantization of constant Dirac structures on tori and prove that O ( n , n | ) -equivalent structures have Morita equivalent quantizations. This completes and extends from the Poisson case a theorem of Rieffel and Schwarz.

Quantization of pencils with a gl-type Poisson center and braided geometry

Dimitri Gurevich, Pavel Saponov (2011)

Banach Center Publications

We consider Poisson pencils, each generated by a linear Poisson-Lie bracket and a quadratic Poisson bracket corresponding to a so-called Reflection Equation Algebra. We show that any bracket from such a Poisson pencil (and consequently, the whole pencil) can be restricted to any generic leaf of the Poisson-Lie bracket. We realize a quantization of these Poisson pencils (restricted or not) in the framework of braided affine geometry. Also, we introduce super-analogs of all these Poisson pencils and...

Currently displaying 141 – 160 of 264