Quenched law of large numbers for branching brownian motion in a random medium
We study a spatial branching model, where the underlying motion is d-dimensional (d≥1) brownian motion and the branching rate is affected by a random collection of reproduction suppressing sets dubbed mild obstacles. The main result of this paper is the quenched law of large numbers for the population for all d≥1. We also show that the branching brownian motion with mild obstacles spreads less quickly than ordinary branching brownian motion by giving an upper estimate on its speed. When the underlying...