Displaying 21 – 40 of 83

Showing per page

Euler hydrodynamics for attractive particle systems in random environment

C. Bahadoran, H. Guiol, K. Ravishankar, E. Saada (2014)

Annales de l'I.H.P. Probabilités et statistiques

We prove quenched hydrodynamic limit under hyperbolic time scaling for bounded attractive particle systems on in random ergodic environment. Our result is a strong law of large numbers, that we illustrate with various examples.

General approximation method for the distribution of Markov processes conditioned not to be killed

Denis Villemonais (2014)

ESAIM: Probability and Statistics

We consider a strong Markov process with killing and prove an approximation method for the distribution of the process conditioned not to be killed when it is observed. The method is based on a Fleming−Viot type particle system with rebirths, whose particles evolve as independent copies of the original strong Markov process and jump onto each others instead of being killed. Our only assumption is that the number of rebirths of the Fleming−Viot type system doesn’t explode in finite time almost surely...

Homogenization results for a linear dynamics in random Glauber type environment

Cédric Bernardin (2012)

Annales de l'I.H.P. Probabilités et statistiques

We consider an energy conserving linear dynamics that we perturb by a Glauber dynamics with random site dependent intensity. We prove hydrodynamic limits for this non-reversible system in random media. The diffusion coefficient turns out to depend on the random field only by its statistics. The diffusion coefficient defined through the Green–Kubo formula is also studied and its convergence to some homogenized diffusion coefficient is proved.

Interacting brownian particles and Gibbs fields on pathspaces

David Dereudre (2003)

ESAIM: Probability and Statistics

In this paper, we prove that the laws of interacting brownian particles are characterized as Gibbs fields on pathspace associated to an explicit class of hamiltonian functionals. More generally, we show that a large class of Gibbs fields on pathspace corresponds to brownian diffusions. Some applications to time reversal in the stationary and non stationary case are presented.

Interacting Brownian particles and Gibbs fields on pathspaces

David Dereudre (2010)

ESAIM: Probability and Statistics

In this paper, we prove that the laws of interacting Brownian particles are characterized as Gibbs fields on pathspace associated to an explicit class of Hamiltonian functionals. More generally, we show that a large class of Gibbs fields on pathspace corresponds to Brownian diffusions. Some applications to time reversal in the stationary and non stationary case are presented.

Iterations for nonlocal elliptic problems

Ewa Sylwestrzak (2004)

Banach Center Publications

Convergence of an iteration sequence for some class of nonlocal elliptic problems appearing in mathematical physics is studied.

Limit shapes of Gibbs distributions on the set of integer partitions : the expansive case

Michael M. Erlihson, Boris L. Granovsky (2008)

Annales de l'I.H.P. Probabilités et statistiques

We find limit shapes for a family of multiplicative measures on the set of partitions, induced by exponential generating functions with expansive parameters, ak∼Ckp−1, k→∞, p>0, where C is a positive constant. The measures considered are associated with the generalized Maxwell–Boltzmann models in statistical mechanics, reversible coagulation–fragmentation processes and combinatorial structures, known as assemblies. We prove a central limit theorem for fluctuations of a properly scaled partition...

Limites réversibles et irréversibles de systèmes de particules.

Claude Bardos (2000/2001)

Séminaire Équations aux dérivées partielles

Il s’agit de comparer les différents résultats et théorèmes concernant dans un cadre essentiellement déterministe des systèmes de particules. Cela conduit à étudier la notion de hiérarchies d’équations et à comparer les modèles non linéaires et linéaires. Dans ce dernier cas on met en évidence le rôle de l’aléatoire. Ce texte réfère à une série de travaux en collaboration avec F. Golse, A. Gottlieb, D. Levermore et N. Mauser.

Currently displaying 21 – 40 of 83