Displaying 21 – 40 of 46

Showing per page

Stability of hydrodynamic model for semiconductor

Massimiliano Daniele Rosini (2005)

Archivum Mathematicum

In this paper we study the stability of transonic strong shock solutions of the steady state one-dimensional unipolar hydrodynamic model for semiconductors in the isentropic case. The approach is based on the construction of a pseudo-local symmetrizer and on the paradifferential calculus with parameters, which combines the work of Bony-Meyer and the introduction of a large parameter.

Steady tearing mode instabilities with a resistivity depending on a flux function

Atanda Boussari, Erich Maschke, Bernard Saramito (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider plasma tearing mode instabilities when the resistivity depends on a flux function (ψ), for the plane slab model. This problem, represented by the MHD equations, is studied as a bifurcation problem. For so doing, it is written in the form (I(.)-T(S,.)) = 0, where T(S,.) is a compact operator in a suitable space and S is the bifurcation parameter. In this work, the resistivity is not assumed to be a given quantity (as usually done in previous papers, see [1,2,5,7,8,9,10], but it depends...

Stimuli-Responsive Polymers in Nanotechnology: Deposition and Possible Effect on Drug Release

A. L. Yarin (2008)

Mathematical Modelling of Natural Phenomena

Stimuli-responsive polymers result in on-demand regulation of properties and functioning of various nanoscale systems. In particular, they allow stimuli-responsive control of flow rates through membranes and nanofluidic devices with submicron channel sizes. They also allow regulation of drug release from nanoparticles and nanofibers in response to temperature or pH variation in the surrounding medium. In the present work two relevant mathematical models are introduced to address precipitation-driven...

Strong diamagnetism for general domains and application

Soeren Fournais, Bernard Helffer (2007)

Annales de l’institut Fourier

We consider the Neumann Laplacian with constant magnetic field on a regular domain in 2 . Let B be the strength of the magnetic field and let λ 1 ( B ) be the first eigenvalue of this Laplacian. It is proved that B λ 1 ( B ) is monotone increasing for large B . Together with previous results of the authors, this implies the coincidence of all the “third” critical fields for strongly type 2 superconductors.

Strong disorder in semidirected random polymers

N. Zygouras (2013)

Annales de l'I.H.P. Probabilités et statistiques

We consider a random walk in a random potential, which models a situation of a random polymer and we study the annealed and quenched costs to perform long crossings from a point to a hyperplane. These costs are measured by the so called Lyapounov norms. We identify situations where the point-to-hyperplane annealed and quenched Lyapounov norms are different. We also prove that in these cases the polymer path exhibits localization.

Superdiffusive bounds on self-repellent precesses in d = 2 — extended abstract

Bálint Tóth, Benedek Valkó (2010)

Actes des rencontres du CIRM

We prove superdiffusivity with multiplicative logarithmic corrections for a class of models of random walks and diffusions with long memory. The family of models includes the “true” (or “myopic”) self-avoiding random walk, self-repelling Durrett-Rogers polymer model and diffusion in the curl-field of (mollified) massless free Gaussian field in 2D. We adapt methods developed in the context of bulk diffusion of ASEP by Landim-Quastel-Salmhofer-Yau (2004).

Superdiffusivity for brownian motion in a poissonian potential with long range correlation I: Lower bound on the volume exponent

Hubert Lacoin (2012)

Annales de l'I.H.P. Probabilités et statistiques

We study trajectories of d -dimensional Brownian Motion in Poissonian potential up to the hitting time of a distant hyper-plane. Our Poissonian potential V is constructed from a field of traps whose centers location is given by a Poisson Point Process and whose radii are IID distributed with a common distribution that has unbounded support; it has the particularity of having long-range correlation. We focus on the case where the law of the trap radii ν has power-law decay and prove that superdiffusivity...

Superdiffusivity for brownian motion in a poissonian potential with long range correlation II: Upper bound on the volume exponent

Hubert Lacoin (2012)

Annales de l'I.H.P. Probabilités et statistiques

This paper continues a study on trajectories of Brownian Motion in a field of soft trap whose radius distribution is unbounded. We show here that for both point-to-point and point-to-plane model the volume exponent (the exponent associated to transversal fluctuation of the trajectories) ξ is strictly less than 1 and give an explicit upper bound that depends on the parameters of the problem. In some specific cases, this upper bound matches the lower bound proved in the first part of this work and...

Sur un problème à frontière libre de la physique des plasmas

H. Gourgeon, Jacqueline Mossino (1979)

Annales de l'institut Fourier

Ce papier porte sur l’étude mathématique d’une équation du type de Grad-Mercier qui décrit, dans certaines circonstances, l’équilibre d’un plasma confiné [H. Grad, P.N. Hu et D.C. Stevens, Proc. Nat. Acad. Sci. USA, 72,n 10 (1975), 3789–3793, C. Mercier, Publication of Euratom, CEA, Luxembourg (1974), C. Mercier, Communications personnelles à R. Temam et aux auteurs]. Il s’agit de trouver une fonction “régulière” u solution du système - Δ u + λ g [ δ ( u ) ] = 0 dans Ω , u = constante (inconnue) > 0 sur Ω , Ω u n = I , Ω est un ouvert borné régulier de R n , et δ ( u ) ( x ) = mes { y Ω u ( x ) < u ( y ) < 0 } . L’opérateur non linéaire...

Surface energies in a two-dimensional mass-spring model for crystals

Florian Theil (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study an atomistic pair potential-energy E(n)(y) that describes the elastic behavior of two-dimensional crystals with natoms where y 2 × n characterizes the particle positions. The main focus is the asymptotic analysis of the ground state energy asn tends to infinity. We show in a suitable scaling regime where the energy is essentially quadratic that the energy minimum of E(n) admits an asymptotic expansion involving fractional powers of n: min y E ( n ) ( y ) = n E bulk + n E surface + o ( n ) , n . The bulk energy densityEbulk is given by an explicit expression...

Currently displaying 21 – 40 of 46