Displaying 241 – 260 of 450

Showing per page

Nonlinear Rescaling Method and Self-concordant Functions

Richard Andrášik (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Nonlinear rescaling is a tool for solving large-scale nonlinear programming problems. The primal-dual nonlinear rescaling method was used to solve two quadratic programming problems with quadratic constraints. Based on the performance of primal-dual nonlinear rescaling method on testing problems, the conclusions about setting up the parameters are made. Next, the connection between nonlinear rescaling methods and self-concordant functions is discussed and modified logarithmic barrier function is...

Nonsmooth equation method for nonlinear nonconvex optimization

Lukšan, Ladislav, Matonoha, Ctirad, Vlček, Jan (2025)

Programs and Algorithms of Numerical Mathematics

The contribution deals with the description of two nonsmooth equation methods for inequality constrained mathematical programming problems. Three algorithms are presented and their efficiency is demonstrated by numerical experiments.

Nonsmooth Problems of Calculus of Variations via Codifferentiation

Maxim Dolgopolik (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper multidimensional nonsmooth, nonconvex problems of the calculus of variations with codifferentiable integrand are studied. Special classes of codifferentiable functions, that play an important role in the calculus of variations, are introduced and studied. The codifferentiability of the main functional of the calculus of variations is derived. Necessary conditions for the extremum of a codifferentiable function on a closed convex set and its applications to the nonsmooth problems of...

On an iterative method for unconstrained optimization

Ioannis K. Argyros (2015)

Applicationes Mathematicae

We present a local and a semi-local convergence analysis of an iterative method for approximating zeros of derivatives for solving univariate and unconstrained optimization problems. In the local case, the radius of convergence is obtained, whereas in the semi-local case, sufficient convergence criteria are presented. Numerical examples are also provided.

Currently displaying 241 – 260 of 450