The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 105

Showing per page

A fine-grained arc-consistency algorithm for non-normalized constraint satisfaction problems

Marlene Arangú, Miguel A. Salido (2011)

International Journal of Applied Mathematics and Computer Science

Constraint programming is a powerful software technology for solving numerous real-life problems. Many of these problems can be modeled as Constraint Satisfaction Problems (CSPs) and solved using constraint programming techniques. However, solving a CSP is NP-complete so filtering techniques to reduce the search space are still necessary. Arcconsistency algorithms are widely used to prune the search space. The concept of arc-consistency is bidirectional, i.e., it must be ensured in both directions...

A generalized proximal point algorithm for the nonlinear complementarity problem

Regina S. Burachik, Alfredo N. Iusem (2010)

RAIRO - Operations Research

We consider a generalized proximal point method (GPPA) for solving the nonlinear complementarity problem with monotone operators in Rn. It differs from the classical proximal point method discussed by Rockafellar for the problem of finding zeroes of monotone operators in the use of generalized distances, called φ-divergences, instead of the Euclidean one. These distances play not only a regularization role but also a penalization one, forcing the sequence generated by the method to remain in the...

A globally convergent non-interior point algorithm with full Newton step for second-order cone programming

Liang Fang, Guoping He, Li Sun (2009)

Applications of Mathematics

A non-interior point algorithm based on projection for second-order cone programming problems is proposed and analyzed. The main idea of the algorithm is that we cast the complementary equation in the primal-dual optimality conditions as a projection equation. By using this reformulation, we only need to solve a system of linear equations with the same coefficient matrix and compute two simple projections at each iteration, without performing any line search. This algorithm can start from an arbitrary...

A new non-interior continuation method for P 0 -NCP based on a SSPM-function

Liang Fang (2011)

Applications of Mathematics

In this paper, we consider a new non-interior continuation method for the solution of nonlinear complementarity problem with P 0 -function ( P 0 -NCP). The proposed algorithm is based on a smoothing symmetric perturbed minimum function (SSPM-function), and one only needs to solve one system of linear equations and to perform only one Armijo-type line search at each iteration. The method is proved to possess global and local convergence under weaker conditions. Preliminary numerical results indicate that...

A new nonmonotone adaptive trust region algorithm

Ahmad Kamandi, Keyvan Amini (2022)

Applications of Mathematics

We propose a new and efficient nonmonotone adaptive trust region algorithm to solve unconstrained optimization problems. This algorithm incorporates two novelties: it benefits from a radius dependent shrinkage parameter for adjusting the trust region radius that avoids undesirable directions and exploits a new strategy to prevent sudden increments of objective function values in nonmonotone trust region techniques. Global convergence of this algorithm is investigated under some mild conditions....

A new one-step smoothing newton method for second-order cone programming

Jingyong Tang, Guoping He, Li Dong, Liang Fang (2012)

Applications of Mathematics

In this paper, we present a new one-step smoothing Newton method for solving the second-order cone programming (SOCP). Based on a new smoothing function of the well-known Fischer-Burmeister function, the SOCP is approximated by a family of parameterized smooth equations. Our algorithm solves only one system of linear equations and performs only one Armijo-type line search at each iteration. It can start from an arbitrary initial point and does not require the iterative points to be in the sets...

Currently displaying 21 – 40 of 105