Page 1

Displaying 1 – 8 of 8

Showing per page

On knowledge games.

J. M. Lasry, J. M. Morel, S. Solimini (1989)

Revista Matemática de la Universidad Complutense de Madrid

We give a formalization of the ?knowledge games? which allows to study their decidability and convergence as a problem of mathematics. Our approach is based on a metalemma analogous to those of Von Neumann and Morgenstern at the beginning of Game Theory. We are led to definitions which characterize the knowledge games as objects is standard set theory. We then study rigorously the most classical knowledge games and, although we also prove that the ?common knowledge? in these games may be incomputable,...

On noncooperative nonlinear differential games

Tomáš Roubíček (1999)

Kybernetika

Noncooperative games with systems governed by nonlinear differential equations remain, in general, nonconvex even if continuously extended (i. e. relaxed) in terms of Young measures. However, if the individual payoff functionals are “enough” uniformly convex and the controlled system is only “slightly” nonlinear, then the relaxed game enjoys a globally convex structure, which guarantees existence of its Nash equilibria as well as existence of approximate Nash equilibria (in a suitable sense) for...

Currently displaying 1 – 8 of 8

Page 1